Summary
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition.

Content

Keywords
neural networks, neuronal dynamics, computational neuroscience, mathematical modeling in biology, applied mathematics, brain, cognition, neurons, memory, learning, plasticity

Learning Prerequisites
Required courses
undergraduate math at the level of electrical engineering or physics majors
undergraduate physics.

Recommended courses
Analysis I-III, linear algebra, probability and statistics
For SSV students: Dynamical Systems Theory for Engineers or "Mathematical and Computational Models in Biology" course, Felix Naef

Important concepts to start the course
Differential equations, stochastic processes,

Learning Outcomes
By the end of the course, the student must be able to:
• Analyze two-dimensional models in the phase plane
• Solve linear one-dimensional differential equations
• Develop a simplified model by separation of time scales
• Analyze connected networks in the mean-field limit
• Formulate stochastic models of biological phenomena
• Formalize biological facts into mathematical models
• Prove stability and convergence
• Apply model concepts in simulations
• Predict outcome of dynamics
• Describe neuronal phenomena

Transversal skills
• Plan and carry out activities in a way which makes optimal use of available time and other resources.
• Collect data.
• Write a scientific or technical report.

Teaching methods
Classroom teaching, exercises and miniproject

Expected student activities
miniprojects

Assessment methods
Written exam (67%) & miniproject (33%)

Resources
Bibliography
Gerstner, Kistler, Naud, Pansinski: Neuronal Dynamics, Cambridge Univ. Press 2014

Ressources en bibliothèque
• Neuronal Dynamics / Gerstner

Videos
• http://lcn.epfl.ch/~gerstner/VideoLecturesGerstner.html
• http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html