EE-511

Sensors in medical instrumentation

Aminian Kamiar

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioingénierie</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Génie électrique et électronique</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Informatique</td>
<td>MA2</td>
<td>Opt.</td>
</tr>
<tr>
<td>Microtechnique</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Technologies biomédicales</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>SC master EPFL</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences du vivant</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Session</td>
<td>Summer</td>
</tr>
<tr>
<td>Semester</td>
<td>Spring</td>
</tr>
<tr>
<td>Exam</td>
<td>Written</td>
</tr>
<tr>
<td>Workload</td>
<td>90h</td>
</tr>
<tr>
<td>Weeks</td>
<td>14</td>
</tr>
<tr>
<td>Hours</td>
<td>3 weekly</td>
</tr>
<tr>
<td>Lecture</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Exercises</td>
<td>1 weekly</td>
</tr>
</tbody>
</table>

Summary

Fundamental principles and methods used for physiological signal conditioning. Resistive, capacitive, inductive, piezoelectric and optical techniques used to detect and convert physiological information's to electrical signals. Laboratory and ambulatory devices for monitoring and therapy.

Content

1. **Physiological Mesurands**
 Biopotentials; bioimpedance; mechanical, acoustic and thermal signals

2. **Noise in medical instrumentation**
 Source and nature of the noise; noise reduction; instrumentation amplifier for biopotential measurement

3. **Biopotential measurement**
 Electrodes; ECG, EMG and EEG measurement

4. **Resistive sensors**
 Thermistor and its biomedical applications; strain gage for the measurement of blood pressure; force and accelerations of the body

5. **Inductive sensors**
 Simple and mutual inductance and its medical applications

6. **Capacitive sensors**
 Respiratory flow measurement by the gradient of pressure

7. **Piezoelectric sensors**
 Force platform, accelerometer, angular rate sensor for the measurement of tremors and body movements, ultrasound transducer : measurement of pressure and flow rate

8. **Optical sensors**
 Photoplethysmography; pulsed oxymetry

9. **Example of applications**

Keywords

sensors, instrumentation, biomedical devices, physiological measurement, monitoring

Learning Prerequisites

Required courses
- courses en electrical circuit, basic electronics

Recommended courses
- measuring systems or electronics or sensors

Important concepts to start the course
basic electronics, basic physics

Learning Outcomes
By the end of the course, the student must be able to:
• Choose techniques detecting and convert physiological information's to electrical signals
• Exploit fundamental principles and methods used for physiological signal conditioning
• Design measuring devices
• Interpret error, noise in biomedical measuring systems

Transversal skills
• Use a work methodology appropriate to the task.
• Communicate effectively with professionals from other disciplines.

Teaching methods
Ex cathedra, with exercises

Expected student activities
home work, short quizzes during semester

Assessment methods
Written

Supervision
Office hours Yes
Assistants Yes
Forum Yes

Resources
Bibliography
Medical Instrumentation : Application and design, JG Webster

Ressources en bibliothèque
• Medical Instrumentation / Webster

Notes/Handbook
Slides copies (to be completed during the lectures)
Polycopies (in French only)

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=2571

Prerequisite for
Semester project and Master project