Summary
An introduction to engineering-relevant computer-science concepts that are hardware and software independent. Outcomes include knowledge of the limits of computing, improved ability to understand the true value of new developments and capabilities to effectively select good computing methodologies.

Content
The course is divided into two parts. The first part deals with concepts such as complexity, task analysis as well as strategies for representation and reasoning using engineering knowledge (1 week). The second part (1 week 1 month later) is devoted to seminars by Doctoral candidates on selected topics complemented by a "critique" and supplementary theoretical background by the teacher.

Keywords
logic, complexity, search and optimisation, machine learning, data-base design

Learning Prerequisites
- Recommended courses

Learning Outcomes
By the end of the course, the student must be able to:
- Develop an efficient software system
- Assess / Evaluate the complexity of an algorithm
- Choose the most appropriate optimisation strategy
- Propose good machine learning strategies

Resources
- Bibliography

Ressources en bibliothèque
- Engineering Informatics: Fundamentals in Computer-Aided Engineering

Websites