ME-409
Energy conversion and renewable energy
Maréchal François, Moret Stefano

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie et durabilité</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Génie nucléaire</td>
<td>MA1</td>
<td>Opt.</td>
</tr>
<tr>
<td>Génie électrique et électronique</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Design intégré, architecture et durabilité</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Energie</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences et ingénierie de l’environnement</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Summary
The goal of the lecture is to present the principles of the energy conversion for conventional and renewable energy resources and to explain the most important parameters that define the energy conversion efficiency, resources implications and economics of the energy conversion technologies.

Content
Overview of energy stakes
Thermodynamic principles relevant for energy conversion systems, review of thermodynamic power cycles, heat pumps and refrigeration cycles, co-generation
Carbon capture and sequestration
Renewable energy vectors, their physical principles and essential equations: Solar (photovoltaics and thermal - collectors/concentrators), geothermal, biomass (a.o. gasification, biogases, liquid biofuels), hydro, wind
Fuel cells and hydrogen as energy vector
Storage of energy: Batteries, compressed air, pumped hydro, thermal storage
Integrated urban systems

Keywords
Energy conversion, renewable energy

Learning Prerequisites
Required courses
Physics I
Physics II

Important concepts to start the course
Conservation principles (energy, mass, momentum)
Some basis in thermodynamics

Learning Outcomes
By the end of the course, the student must be able to:
- Quantify the efficiency and the main emission sources of energy conversion processes
- Explain the efficiency and the main emission sources of energy conversion processes
- Model energy conversion systems and industrial processes
- Draw the energy balances of an energy conversion system
Elaborate energy conversion scenarios
• Describe the principles and limitations of the main energy conversion technologies
• Compare energy conversion systems

Transversal skills
• Use a work methodology appropriate to the task.
• Demonstrate the capacity for critical thinking
• Write a scientific or technical report.
• Access and evaluate appropriate sources of information.
• Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.

Teaching methods
ex cathedra courses 2 hours per week and 1 hour of exercice with teaching assistant

Expected student activities
• active partiicipation to the lecture
• exercice for the exam presentation
• a mini project consisting in writing a 6 page report on an energy scenario for Switzerland

Assessment methods
Written exam (66%) and a project report (34%).

Supervision
Office hours No
Assistants Yes
Forum Yes

Resources
Notes/Handbook
Slides, videos and other documents are available on moodle

Websites
• http://moodle.epfl.ch
• http://www.energyscope.ch

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=15230

Videos
• http://available on moodle