Summary
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well as detectors, instrumentations and measurements methods commonly used in the nuclear field.

Content
- Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeV range, ionisation, nuclear cross sections.
- Characteristics and types of detectors: gas detectors, semiconductor detectors, scintillators and optical fibers, fission chambers, meshed and pixel detectors
- Signal processing and analysis: types of electronics, signal collection and amplification, particle discrimination, spatial and time resolution
- Nuclear instrumentation and measurements: principle of measurements, spectrometry, common detection instrumentations, applications in nuclear engineering and R&D.

Keywords
radiation detection; radiation-matter interaction; ionizing radiation; detector; signal processing; nuclear instrumentation; measurement methods

Learning Outcomes
By the end of the course, the student must be able to:
- Explain interaction processes of ionising radiation and matter
- Describe the production of a detection signal and its processing
- Explain the operation of all types of commonly used detectors
- Assess / Evaluate the detection system and method required for a specific measurement

Transversal skills
- Communicate effectively with professionals from other disciplines.

Teaching methods
Lectures, exercises, presentations, practice.

Expected student activities
Attendance at lectures and exercises, short presentations.

Assessment methods
Oral exam

Supervision
Assistants Yes

Resources

Bibliography
Radiation detection and measurement, Glenn F. Knoll. Wiley 2010

Ressources en bibliothèque
- Radiation detection and measurement, Glenn F. Knoll
- Practical Gamma-Ray Spectrometry, Gordon R. Gilmore