Reservoir geo-mechanics engineering

Lecampion Brice

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mécanique</td>
<td></td>
<td>Obl.</td>
</tr>
</tbody>
</table>

- **Language**: English
- **Credits**: 3
- **Session**: Winter
- **Semester**: Fall
- **Exam**: During the semester
- **Workload**: 90h
- **Weeks**: 14
- **Hours**: 3 weekly
 - Lecture: 2 weekly
 - Exercises: 1 weekly

Summary

This course introduces the concepts required to develop fluid-filled porous reservoirs in subterranean formation for a number of industrial applications. It covers the effects of fluid withdrawal and injection on in-situ rock stresses and deformation, well stimulation, deep drilling etc.

Content

- Introduction to geo-energy & the different types of subterranean reservoirs
- Introduction to numerical methods in geomechanics (FE/FD algorithms for hydro-mechanical coupling)
- Deep well construction
- Poroelasticity & flow in deformable fractures
- Extension to thermal effects
- Fluid flow around a well, pore-pressure diffusion, interference between wells, introduction to reservoir management.
- Effects induced by fluid withdrawal and/or injection: fault re-activation, induced seismicity, surface deformation, cap-rock integrity, un-controlled fracturing.
- Introduction to hydraulic fracturing for well stimulation.
- Applications to conventional and unconventional hydrocarbon resources, deep geothermal systems and CO2 geological storage.

Keywords

geo-energy, energy, geotechnical engineering, poromechanics, fluid flow, fractures, wells

Learning Prerequisites

Required courses
- Continuum mechanics (solid and fluid)
- Geomechanics

Recommended courses
- Geomechanics, groundwater flow, soil mechanics, rock mechanics, fracture mechanics

Important concepts to start the course

good knowledge of continuum mechanics

Learning Outcomes
By the end of the course, the student must be able to:

- Contextualise - understand the necessary steps required to develop a geo-mechanical model of the sub-surface
- Assess / Evaluate the impact of fluid withdrawal and/or injection on sub-surface stresses and deformation (notably the risks of large induced seismicity)
- Recognize and discuss the uncertainties related to the sub-surface
- Contextualise - understand the step of well construction and completion
- Assess / Evaluate when and how to stimulate a well by hydraulic fracturing
- Discuss the initiation of hydraulic fractures and their different regimes of propagation

Transversal skills

- Access and evaluate appropriate sources of information.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking
- Take responsibility for environmental impacts of her/ his actions and decisions.

Expected student activities

A group project will be assigned mid-october and run through the end of the semester. It will count for 50% of the grade. It will involve the following steps: i) solving analytically/numerically a simplified configuration linked to a real engineering problem, ii) discussing order of magnitude via dimensional analysis, iii) and discuss the relevance of the results for practice.

Assessment methods

50% Project during the semester
50% Final oral exam

Supervision

<table>
<thead>
<tr>
<th>Office hours</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>