CS-210
Functional programming
Kuncak Viktor, Odersky Martin

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HES - IN</td>
<td>H</td>
<td>Obl.</td>
</tr>
<tr>
<td>Informatique</td>
<td>BA3</td>
<td>Obl.</td>
</tr>
<tr>
<td>Systèmes de communication</td>
<td>BA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Session</td>
<td>Winter</td>
</tr>
<tr>
<td>Semester</td>
<td>Fall</td>
</tr>
<tr>
<td>Exam</td>
<td>During the semester</td>
</tr>
<tr>
<td>Workload</td>
<td>150h</td>
</tr>
<tr>
<td>Weeks</td>
<td>14</td>
</tr>
<tr>
<td>Hours</td>
<td>4 weekly</td>
</tr>
<tr>
<td>Lecture</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Exercises</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Number of positions</td>
<td></td>
</tr>
</tbody>
</table>

Summary
Understanding of the principles and applications of declarative programming, the fundamental models of program execution, application of fundamental methods of program composition, meta-programming through the construction of interpreters and advanced programming techniques.

Content
- Introduction to programming in Scala
- Expressions and functions
- Classes and objects
- Evaluation by rewriting
- Pattern matching
- Polymorphism
- Evaluation strategies
- Domain-specific languages
- Constraint programming
- Language interpretation
- An interpreter for Lisp
- An interpreter for Prolog

Learning Prerequisites
- Required courses
 - Introduction to the programming objet
 - Theory and practice of programming

Learning Outcomes
By the end of the course, the student must be able to:
- Create functional programs
- Design robust and readable software
- Formalize program correctness
- Interpret programs automatically
- Prove correctness using induction
- Construct software

Transversal skills

Functional programming
Page 1 / 2
• Demonstrate a capacity for creativity.
• Use a work methodology appropriate to the task.
• Set objectives and design an action plan to reach those objectives.
• Give feedback (critique) in an appropriate fashion.

Teaching methods
MOOC. Ex Cathedra. Exercises and projects

Assessment methods
Continuous and written test at the end of the course

Resources

Bibliography
Abelson/Sussman : Structure and Interpretation of Computer Programs, MIT Press

Ressources en bibliothèque
• Structure and Interpretation of Computer Programs / Abelson
• Programming in Scala (Third Edition) / Odersky

Websites
• https://www.scala-lang.org/
• http://Lampwww.epfl.ch/teaching
• https://courseware.epfl.ch/courses/course-v1:EPFL+progfun1+2018_T1/about
• https://www.artima.com/shop/programming_in_scala
• https://courseware.epfl.ch/courses/course-v1:EPFL+progfun2+2018_T1/about