Summary
The course introduces the students to the basic notions of computer architecture and, in particular, to the choices of the Instruction Set Architecture and to the memory hierarchy of modern systems.

Content
• Complex digital systems in VHDL.
• Basic components of a computer.
• Instruction Set Architectures.
• Assembly-level programming.
• Multi-cycle implementation of processors.
• Caches.
• Virtual memory.

Keywords
Computer Architecture, Basic Processor Architecture, Instructions Sets, Cache Hierarchies, Virtual Memory.

Learning Prerequisites
Required courses
• Conception de systèmes numériques

Learning Outcomes
By the end of the course, the student must be able to:
• Design and implement a processor at the Register Transfer Level using logic synthesizers and simulators.
• Develop assembly language programs.
• Justify the organization of a modern memory system including cache hierarchies and virtual memory.
• Design and implement a cache memory.
• Design and implement a virtual memory.

Teaching methods
• Ex cathedra lectures and exercises.
• Labs on a dedicated FPGA board.

Expected student activities

• Attending the course and exercise/lab sessions.
• Completing the lab assignments.
• Homework: solving the exercises in the course exercise book.
• Participating in the discussions on the forum.

Assessment methods

Continuous assessment.

Supervision

<table>
<thead>
<tr>
<th>Supervision</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Office hours</td>
<td>Yes</td>
</tr>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Resources

Virtual desktop infrastructure (VDI)
No

Bibliography


Ressources en bibliothèque

• Computer Organization and Design: The Hardware-Software Interface / Patterson

Moodle Link


Prerequisite for

• Architecture des systems-on-chip.