Information theory and coding

Telatar Emre

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Génie électrique et électronique</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Informatique et communications</td>
<td></td>
<td>Obl.</td>
</tr>
<tr>
<td>Informatique</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Informatique</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Systèmes de communication</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>SC master EPFL</td>
<td>MA1, MA3</td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Summary

The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.

Content

1. Mathematical definition of information and the study of its properties.
3. Communication channels and their capacity.
4. Coding for reliable communication over noisy channels.
5. Multi-user communications: multi access and broadcast channels.
7. Information Theory and statistics

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the fundamental concepts of information theory such as entropy, mutual information, channel capacity
- Elaborate the principles of source coding and data transmission
- Analyze source codes and channel codes
- Apply information theoretic methods to novel settings

Teaching methods

Ex cathedra + exercises

Assessment methods

With continuous control

Resources

- **Ressources en bibliothèque**
 - Elements of Information Theory / Cover

Websites