Can we plant n trees in an orchard, not all along the same line, so that every line determined by two trees will pass through a third? This was raised by Sylvester and has generated interest among mathematicians. It led to the birth of combinatorial geometry with ties to convexity and graph theory.

Content
The course offers an introduction to this rapidly developing field, where combinatorial and probabilistic (counting) methods play a crucial role.
Topics: Extremal graph theory, Repeated distances in space, Arrangements of lines and curves, Geometric graphs, Epsilon nets, Discrepancy theory, Applications in computational geometry.

Keywords
forbidden graph, hypergraph, incidence, arrangement, Vapnik-Chervonenkis dimension, random sampling

Learning Prerequisites
Required courses
Discrete Mathematics

Recommended courses
Probability Theory

Important concepts to start the course
graph, planar graph, random variable, expected value, variance

Teaching methods
Lectures, exercises

Expected student activities
Solving homework problems, answering questions during lecture and exercise sessions

Assessment methods
Written
Supervision
Office hours Yes
Assistants Yes

Resources

Bibliography
J. Pach and P. Agarwal: Combinatorial Geometry,
J. Matousek: Lectures on Discrete Geometry

Ressources en bibliothèque
• Combinatorial Geometry / Pach & Agarwal
• (electronic version)
• Lectures on Discrete Geometry / Matousek