Summary
Test of VLSI Systems covers theoretical knowledge related to the major algorithms used in VLSI test, and design for test techniques. Basic knowledge related to computer-aided design for test techniques, and their integration into a design-flow are presented.

Content
This course covers the analysis and implementation of test techniques for digital VLSI. Regular class lectures form the core of the course. Introduction to test theory Introductory topics cover the role of testing, automatic test equipment and an overview of the economics of test. Test methods In a second part, fault modeling and test methods are studied. The major topics that will be considered are related to fault simulation, automatic test-pattern generation (significant combinational and sequential ATPG algorithms), measures of testability and miscellaneous test methods. Industry popular models and algorithms are presented and exercised. Design for testability A third part sets the focus on design for test (DFT) techniques. Tackled topics include scan design, built-in-self-testing (BIST - LFSR and signatures) and the Boundary-Scan standard (JTAG). Testing of memory circuits is also presented. Aside from theoretical lectures, a number of course modules are devoted to in-class guided exercise sessions, and hand-on computer laboratory sessions, which take place along the semester and complement with a practical-oriented presentation of the topics.

Keywords
VLSI systems test, integrated circuits test, D-algorithm, design for test

Learning Prerequisites
Recommended courses
Basics of VLSI, digital systems

Learning Outcomes
By the end of the course, the student must be able to:
• Elaborate an integrated circuit test strategy
• Analyze the needs in test of a VLSI system
• Develop blocs enabling integrated circuit test
• Assess / Evaluate necessity to carry out test

Transversal skills
• Communicate effectively with professionals from other disciplines.
• Use both general and domain specific IT resources and tools

Teaching methods
Ex cathedra class lectures, exercises and practical exercises

Expected student activities
Attend class lectures, solve exercises, attend and solve practical laboratory exercises using professional software

Assessment methods
Written, with a mandatory continuous control written midterm and laboratory sessions

Supervision
Office hours No
Assistants Yes
Forum No

Resources
• Essentials of Electronic Testing / Bushnell

Notes/Handbook
Lecture notes

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=293

Prerequisite for
Projects