ChE-304
Energy systems engineering
Luterbacher Jeremy, Smit Berend

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie chimique</td>
<td>BA6</td>
<td>Obl.</td>
</tr>
<tr>
<td>HES - CGC</td>
<td>E</td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Language
English

Credits
3

Session
Summer

Semester
Spring

Exam
During the semester

Workload
90h

Weeks
14

Hours
3 weekly

Lecture
2 weekly

Exercises
1 weekly

Number of positions

Summary

This course will provide a toolkit to students to understand and analyze sustainable energy systems. In addition, the main sustainable energy technologies will be introduced and their governing principles explained.

Content

1. **Basics of energy analysis**
 - Technical aspects of energy: Thermodynamics of energy conversion
 - Systems modeling

2. **Global energy analysis**
 - Energy: issues, definitions and resources
 - Energy economics

3. **Sustainable energy technologies** (the technologies covered will vary year to year depending on guest lecturers)
 - Energy Storage, management and distribution
 - Fossil energy and carbon sequestration
 - Geothermal energy
 - Hydropower
 - Wind energy
 - Solar energy
 - Biomass conversion and bioenergy

Learning Prerequisites
Required courses
Thermodynamics, General Chemistry

Recommended courses
Introduction to Chemical Engineering I and II

Learning Outcomes
By the end of the course, the student must be able to:
• Analyze a renewable energy system
• Describe the working principles of the principle sustainable energy technologies
• Describe the main issues pertaining to the global energy supply
• Analyze the thermodynamics of a sustainable energy system
• Perform a simple systems analysis of a renewable energy system
• Analyze the economics of a sustainable energy system

Teaching methods
Course with examples, case studies and exercises

Assessment methods
Continuous: one in-class exam and a project to be turned in.