MICRO-513  
Signal processing for functional brain imaging

Van De Ville Dimitri Nestor Alice

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioingénierie</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Génie électrique et électronique</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Neuroprosthtiques</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Neurosciences computtionelles</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Robotique</td>
<td>MA2</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences du vivant</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences et technologies du vivant</td>
<td>MA2</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Summary

MICRO-513 is an interdisciplinary course at the interface of neuroscience, psychology, engineering, and statistics. Students will learn mathematical and statistical processing tools in the context of analyzing human brain imaging data.

Content

Human brain imaging (MRI, fMRI, EEG) allows non-invasive investigation of the human brain in health and disease. Data sets are large and noisy and their analysis depends on an array of mathematical and signal processing tools. Students will learn to implement general tools including linear regression (mass univariate models), multivariate models (principal components analysis, partial least squares, independent component analysis), pattern recognition (machine learning), and graphical models. Lab exercises and Matlab exercises allow analysis of real brain imaging data. A journal club emphasizes application of brain imaging tools in fundamental and clinical neuroscience. Students will read, present and critique original research papers.

Keywords

neuroimaging, functional MRI, EEG, brain mapping, systems-level neuroscience

Learning Prerequisites

Important concepts to start the course
Mathematics at the engineering level (i.e., matrix algebra, probability theory)
Basic signal processing concepts

Learning Outcomes

By the end of the course, the student must be able to:
- Explore clinical and cognitive neuroscience
- Propose a brain imaging experiment
- Design data analysis method
- Choose among signal processing tools
- Implement signal processing tools
- Assess / Evaluate statistical significance
- Critique original research papers
- Structure a scientific presentation

Transversal skills

- Use a work methodology appropriate to the task.
• Make an oral presentation.
• Give feedback (critique) in an appropriate fashion.

Teaching methods
lectures, lab exercises for analysis of real brain imaging data sets, homework exercises for understanding and implementation of specific tools, journal club for exploring applications of brain imaging in fundamental and clinical neuroscience, journal club presentations for synthesis and critique of original research as well as practice of presentation skills.

Expected student activities
attendance at lectures and exercises. one journal club.

Assessment methods
written exam.

Supervision
Office hours No
Assistants Yes
Forum Yes

Resources
Moodle Link
• http://moodle.epfl.ch/course/view.php?id=14944