Atomistic and quantum simulations of materials

Cursus

<table>
<thead>
<tr>
<th>Science et génie des matériaux</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA2, MA4</td>
<td>Opt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science et ing. computationelles</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA2, MA4</td>
<td>Opt.</td>
<td></td>
</tr>
</tbody>
</table>

Language English

Credits 4

Session Summer

Semester Spring

Exam During the semester

Workload 120h

Weeks 14

Hours 120h

4 weekly

2 weekly

Lecture

2 weekly

Practical work

2 weekly

Number of positions

Remarque

pas donné en 2018-19

Summary

Theory and application of quantum simulations to model, understand, and predict the properties of real materials.

Content

Learning Prerequisites

Recommended courses

Fundamentals of solid-state materials, or similar.

Learning Outcomes

By the end of the course, the student must be able to:

- Model materials with quantum mechanical simulations

Teaching methods

Ex cathedra and computational laboratories

Assessment methods

Written reports of computational labs