CH-448
Photomedicine

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimiste</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Photonics minor</td>
<td>E</td>
<td>Opt.</td>
</tr>
<tr>
<td>Photonique</td>
<td></td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Summary
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biological tissues, their optical properties and basic concepts in photobiology and photochemistry.

Content
- Brief history
- Radiometry and Photometry
- Brief introduction to general optics and tissue optics
- Light dosimetry
- Light-tissues interactions
- Introduction to molecular optical spectroscopy (Absorption, fluorescence spectroscopy and imaging techniques; vibrational and Raman spectroscopy; time-resolved luminescence spectroscopy and imaging)
- Dyes and luminophores
- Instrumental aspects (Light sources, detectors and optical systems)
- Light sources, detectors and optical systems.
- Illustrative and most important clinical applications of light in photomedicine

Keywords
Photomedicine, tissue optics, photobiology, photochemistry, light-tissue interactions, photodiagnosis, phototherapy, light dosimetry, dyes, photosensitizers.

Learning Prerequisites
Important concepts to start the course
Basic background in biology, chemistry and optics.

Learning Outcomes
- Define the spectral design of apparatus used in biomedical optics.
- Compute the light dose in biological tissues.
• Identify the optical components to develop an apparatus used in photodetection and phototherapy.
• Describe the working principles of apparatus used in biomedical optics.
• Model the propagation of light in biological tissues.
• Interpret data obtained or published in the field of photomedicine.
• Describe the photobiological and photochemical mechanisms involved in photomedicine.

Transversal skills
• Communicate effectively with professionals from other disciplines.
• Access and evaluate appropriate sources of information.
• Write a scientific or technical report.
• Write a literature review which assesses the state of the art.
• Summarize an article or a technical report.
• Demonstrate the capacity for critical thinking

Teaching methods
Lectures, Exercises performed at home and during the courses, recent literature review papers, classroom discussion + oral presentation.

Expected student activities
Exercises, lecture of review papers, classroom discussion + oral presentation.

Assessment methods
Oral exam (1/2) + oral presentation (1/4) + exercises (1/4).

Supervision
Office hours	Yes
Assistants	Yes
Forum	No

Resources
Bibliography
- Optics, E. Hecht (Addison Wesley, 2000).

Ressources en bibliothèque
• Optical-thermal response of laser-irradiated Tissue / Welch
• Optics / Hecht
• Handbook of photomedicine / Hamblin
• Quantitative biomedical optics / Bigio
• Handbook of biomedical fluorescence / Mycek
• Photosensitizers in biomedicine / Wainwright
• Principles of fluorescence spectroscopy / Lakowicz

Notes/Handbook
Slides available on Moodle.

Websites
• http://lcom.epfl.ch/wagnieres
• http://people.epfl.ch/georges.wagnieres?lang=en&cvlang=en
• http://www.opticsinfobase.org/vjbo/virtual_issue.cfm
• http://www.photobiology.info

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=XYZ

Prerequisite for
Master. Academic research and R/D activities in the industry of this field