Summary
Measuring physical quantities lies at the heart of how engineers and scientists interact with the world around us. This course introduces most common approaches to measuring and reporting quantities such as temperature, humidity, force, acceleration, strain etc. using modern types of sensors.

Content
Sensors and conditioning circuits. Introduction to transducers, sensors and actuators. Active and passive sensors and their conditioning.

Modeling a measuring system. Measurands and functional components of a measuring system, interfering and modifying inputs, static and dynamic characteristics, identification of transfer function, loading effects.

Comparing measured data. Statistical measuring parameters and their estimation. Random variable and realization, population and sampling. Main distribution, confidence interval, estimation of systematic and random errors by hypothesis tests. Test; retest and reliability of measurement.

Data acquisition. General specification. Sampling, coding, quantization, data conversion (D/A and A/D), multiplexing.

Learning Prerequisites
Required courses
Electrotechnics I and II

Learning Outcomes
By the end of the course, the student must be able to:

- Describe the generic measurement chain
- Choose the appropriate sensor for a given measurement
- Work out / Determine sources of noise in the measurement setup
- Interpret measurement results
- Compare measurement results
- specification sheets for sensors

Teaching methods
Ex cathedra, with exercises

Expected student activities
Attending lectures
Attending exercises
Completing exercises at home

Assessment methods
Written exam at end of the semester.
One test during the semester resulting in maximal bonus of +1 for the final grade.

Resources

Bibliography
- Course notes and slides

Ressources en bibliothèque
- Ajouter au Panier *Acquisition de données : du capteur à l'ordinateur / Asch*
- *Systèmes de mesure / Paratte*

Prerequisite for
EE-207 Measuring systems laboratory