Summary
The objective of this course is to provide a complete introduction to deep machine learning. How to design a neural network, how to train it, and what are the modern techniques that specifically handle very large networks.

Content
The course aims at teaching the required skills to use deep learning methods on applied problems. It will show how to design and train a deep neural network for a given task, and the sufficient theoretical basis to go beyond the topics directly seen in the course.

The planned content of the course:

- What is deep learning, introduction to tensors.
- Basic machine-learning, empirical risk minimization, simple embeddings.
- Linear separability, multi-layer perceptrons, back-prop.
- Initialization, optimization, and regularization. Drop-out, activation normalization, skip connections.
- Deep models for Computer Vision.
- Analysis of deep models.
- Auto-encoders, embeddings, and generative models.
- Recurrent models and Natural Language Processing.
- pytorch tensors, deep learning modules, and internals.

Concepts will be illustrated with examples in the pytorch framework (http://pytorch.org).

Keywords
machine learning, neural networks, deep learning, computer vision, python, pytorch

Learning Prerequisites
Required courses
- Linear algebra (vector, matrix operations, Euclidean spaces).
- Differential calculus (Jacobian, Hessian, chain rule).
- Python programming.
- Basics in probabilities and statistics (discrete and continuous distributions, normal density, law of large numbers, conditional probabilities, Bayes, PCA)

Recommended courses
- Basics in optimization (notion of minima, gradient descent).
- Basics in algorithmic (computational costs).
- Basics in signal processing (Fourier transform, wavelets).

Learning Outcomes
By the end of the course, the student must be able to:

- Design a deep neural network
- Design a training procedure
- Design a sound evaluation protocol

Transversal skills
- Use a work methodology appropriate to the task.
- Collect data.
- Demonstrate a capacity for creativity.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods
Ex-cathedra with exercise sessions and mini-projects. Invited speakers from the industry will present how deep learning is used in practice for their applications.

Assessment methods
Two mini-projects by groups of three students, and one final written exam.

Supervision

<table>
<thead>
<tr>
<th>Office hours</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Resources

Ressources en bibliothèque
- Deep Learning / Goodfellow

Notes/Handbook
Not mandatory: http://www.deeplearningbook.org/