Summary
Stream and river ecosystems are increasingly deteriorated owing to global change and climate change. Students will understand basic physical, chemical and biological processes in streams and rivers, and how they relate to ecosystem health and integrity.

Content
The class will provide fundamental insights into physical and chemical processes of stream and river ecosystems, which will be linked to the ecology and ecosystem processes therein. At the end of the class, acquired knowledge will be converged into a discussion on ecological restoration strategies and the management of water resources in the Anthropocene.

The class (2 ETCS, Prof. Battin) will encapsulate the following units:
1. Introduction and rationale — why fluvial biogeosciences?
2. From geomorphology and hydrology to ecosystems
3. The basics of benthic and hyporheic life
4. Streams and rivers are global players — from water resources to biogeochemistry
5. Carbon and nutrient cycling
6. Ecosystem metabolism
7. Biogeosciences for environmental engineers and scientists

The class will be accompanied by the practical work (2 ETCS) in the laboratory and in the field. It will convey insights into research on fluvial biogeosciences, including proposal writing, and practical work related to metabolism and microbial ecology. Students will learn on a weekly basis how to design, plan and carry out a small research project; this requires the regular presence of the students to conduct fieldwork, lab work and computer exercises. The project will be led by Dr. Amber Ulseth and Dr. Hannes Peter, and assisted by the Doctoral Assistants David Scheidweiler and Asa Horgby.

Keywords
biogeosciences, streams and rivers, hydrodynamics, biogeochemistry, ecosystem science, benthic life, nutrient cycling, metabolism, restoration, management

Learning Prerequisites
Recommended courses
The BSc Class Aquatic Ecosystems (ENV-321) would be an asset.

Important concepts to start the course
A basic understanding of fluvial ecosystems, hydrology, geomorphology and hydraulics would be helpful.

Learning Outcomes
By the end of the course, the student must be able to:

• Report on their project on fluvial biogeosciences
• Assess / Evaluate critical environmental issues related to stream ecosystems
• Theorize basic concepts in fluvial biogeosciences
• Assess / Evaluate benthic life
• Assess / Evaluate ecological restoration strategies
• Generalize theory in fluvial biogeosciences
• Carry out simple experiments in fluvial biogeosciences

Teaching methods
power point, black board, hand-on in the lab and in the field, computer exercises

Expected student activities
Interactions and discussions with teachers
feedback and respond to questions
feedback in an appropriate manner on the content and its presentation
conduct a supervised small research project
report on the methods and results from the practical work

Assessment methods
written exam (70%)
project - active work in the lab, field and report (30%)

Supervision
Office hours Yes
Assistants Yes
Others office hours: Tuesday 11:00 to 12:00 (Prof Battin)
assistants: Dr Amber Ulseth and Dr Hannes Peter

Resources
Bibliography

Ressources en bibliothèque
• The Heartbeat of Ecosystems
• Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals
• Contributions of microbial biofilms to ecosystem processes in stream mesocosms
• The boundless carbon cycle
• Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes