MSE-443(a) Modelling problem solving, computing and visualisation I
Carter W. Craig

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science et génie des matériaux</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Session</td>
<td>Winter</td>
</tr>
<tr>
<td>Semester</td>
<td>Fall</td>
</tr>
<tr>
<td>Exam</td>
<td>During the semester</td>
</tr>
<tr>
<td>Workload</td>
<td>60h</td>
</tr>
<tr>
<td>Weeks</td>
<td>14</td>
</tr>
<tr>
<td>Hours</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Lecture</td>
<td>1 weekly</td>
</tr>
<tr>
<td>Practical work</td>
<td>1 weekly</td>
</tr>
<tr>
<td>Number of positions</td>
<td></td>
</tr>
</tbody>
</table>

Remarque
Lectures for this course will only be given for three weeks in the semester; each of those weeks will consist of 4-5 hours in the evenings.

Summary
The course will cover programming, numerical simulation, and visualization methods using Mathematica software. Students will be able to apply these skills to their current coursework, and prepared for the companion course (MSE 443(b)) which covers advanced materials science modeling.

Content
• Programming constructs in Mathematica
• Functional Programming
• Pattern Matching
• Visualization and Graphics Programming
• Exact and Numerical Simulations of partial differential equations
• Image processing

Keywords
programming, visualization, simulations, materials science

Learning Prerequisites
Important concepts to start the course
• Calculus and Linear Algebra
• Basic materials science concepts

Learning Outcomes
By the end of the course, the student must be able to:
• Compute solutions to materials science problems
• Visualize numerical results and material structures
• Elaborate and explain results using visual media
• Integrate several programming techniques
• Manipulate data for fitting and visualization

Transversal skills
• Demonstrate a capacity for creativity.
• Demonstrate the capacity for critical thinking
• Take feedback (critique) and respond in an appropriate manner.

Teaching methods
Lectures with in-class exercises

Expected student activities
Students will be given 3 individual projects, and will prepare a report on a final project.

Assessment methods
Grades will be computed for each project. Each will be weighted 25%

Supervision
Office hours Yes

Resources
Bibliography
Mathematica Documentation

Ressources en bibliothèque
• Programming with mathematica: an introduction / Wellin

Prerequisite for
MSE-443(b)