Audio and acoustic signal processing

COM-415

Faller Christof, Kolundzija Mihailo

Cursus

<table>
<thead>
<tr>
<th>Cybersecurity</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science</td>
<td>MA1</td>
<td>Opt.</td>
</tr>
<tr>
<td>Humanités digitales</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Informatique</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Data science</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>SC master EPFL</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language English
Credits 5
Session Winter
Semester Fall
Exam Written
Workload 150h
Weeks 14
Hours 5 weekly

Number of positions

Summary

The objective of the course is to introduce theory, methods, and basic psychoacoustics that is needed to understand state-of-the-art techniques used in pro audio and consumer audio, including microphones, surround sound, mixing and audio coding.

Content

- Acoustics and audio is covered and the manipulation and processing of audio signals. It is shown how Fourier analysis of a sound field yields the representation of the sound field with plane waves. These and other acoustic insights are used to explain microphone techniques and reproduction of sound fields.
- Psychoacoustics, loudness perception and spatial hearing are covered in detail. The latter is used to motivate stereo and surround mixing and audio playback. Audio playback is put into context with a detailed coverage of room acoustics.
- The short-time Fourier transform is introduced as a tool for flexible manipulation of audio signals, such as filtering, delaying and other spectral modification. Matrix surround, audio coding, and beamforming are also treated.

Learning Prerequisites

Recommended courses

Signal processing for communication, any course on Signals and Systems

Learning Outcomes

By the end of the course, the student must be able to:

- Apply basics of acoustics, signal processing, reproduction and capture
- Understand and implement linear and adaptative filtering, beamforming, noise suppression, audio coding, stereo and multichannel sound capture and reproduction

Teaching methods

In class ex-cathedra + exercices + mini-project supervision

Expected student activities

- Theoretical and practical exercises
• MINI-PROJECTS: individual or in small groups

Assessment methods

• Final exam
• Midterm exam
• Mini-project

Supervision

<table>
<thead>
<tr>
<th>Office hours</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>