Perspectives in Modern Organic Chemistry (OCS) 1

Cramer Nicolai, Vacat., Zhu Jieping

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimie et génie chimique</td>
<td></td>
<td>Obl.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Session</td>
<td>Oral</td>
</tr>
<tr>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>30h</td>
</tr>
<tr>
<td>Hours</td>
<td>21</td>
</tr>
<tr>
<td>Lecture</td>
<td>7</td>
</tr>
<tr>
<td>Exercises</td>
<td>14</td>
</tr>
</tbody>
</table>

Frequency

Every year

Remarque

Next time: Fall semester 2019

Summary

Total synthesis, Natural product, Green chemistry, Enantioselective synthesis, Organo-catalysis, Lewis acid, Transition-metal, Drug discovery

Content

Natural product, modern synthetic tools
C-C bond formation, C-heteroatom bond formation
Enantioselective synthesis
Lewis acid-catalyzed transformation
Transition metal-catalyzed transformation
Organocatalysis
Green chemistry
Drug development, Drug discovery
Interface of organic chemistry/biology, organic chemistry/bioorganic chemistry

Note

Enrolment: edch@epfl.ch
Fall+Spring

Keywords

Total synthesis, Natural product, Green chemistry, Enantioselective synthesis, Organo-catalysis, Lewis acid, Transition-metal, Drug discovery

Learning Prerequisites

Important concepts to start the course
M2 level

Resources

Websites

• http://isic.epfl.ch/OCseminar