MICRO-710 PLLs and clock & data recovery Kayal Maher

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie électrique</td>
<td></td>
<td>Obl.</td>
</tr>
<tr>
<td>Microsystèmes et microélectronique</td>
<td></td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Remarque
June 17th to 21st, 2019. ROOM: ELA1 or ELA2.

Summary
The course is covering following aspects: Fundamentals of Analog PLLs, Interference Effects, Deadzone and Phase Noise, VCO Design, All-Digital PLL Architecture and Implementation, Digitally-Controlled Oscillator, Time-to-Digital Converter, RC-Oscillators, Designing XTAL and MEMS Oscillator.

Content

Day 1:
- Fundamentals of Analog PLLs
- Interference Effects in PLLs
- Spiral Inductor Interference, Deadzone and Phase Noise

Day 2:
- VCO Design
- Jitter and Phase Noise in PLLs

Day 3:
- All-Digital PLL Architecture and Implementation
- Digitally-Controlled Oscillator (DCO)
- Time-to-Digital Converter (TDC)

Day 4:
- Oscillator Basics: Feedback and Power Consumption
- RC-Oscillators
- Designing XTAL and MEMS Oscillator from MHz to GHz
- Low Phase Noise and Low Jitter 0.1-10GHz VCO

Day 5:
- Fractional-N PLLs for Frequency Synthesis
- FDC-Based Digital PLLs

Note
* Organized by MEAD/EPFL
Contact: education@mead.ch

Keywords
Clock Recovery, PLL, VCO Circuits, Oscillators, Transceivers

Learning Prerequisites
Recommended courses
Analog IC Design

Resources

Ressources en bibliothèque

• Analog-to-Digital Conversion / Pelgrom
• Structured Analog CMOS Design / Kayal
• Understanding delta-sigma data converters / Schreier
• Understanding Delta-Sigma Data Converters / Pavan
• RF analog impairments modeling for communication systems simulation: application to OFDM-based transceivers / Smaini
• All-Digital Frequency Synthesizer in Deep-Submicron CMOS / Staszewski
• Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design / Enz
• Analog Design Essentials / Sansen
• Methodology for the Digital Calibration of Analog Circuits & Systems / Kayal