MSE-658  
Electrochemistry in Corrosion Research

Mischler Stefano, Various lecturers

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Type</th>
<th>Language</th>
<th>Credits</th>
<th>Session</th>
<th>Exam</th>
<th>Workload</th>
<th>Hours</th>
<th>Lecture</th>
<th>Exercises</th>
<th>Practical work</th>
<th>Number of positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science et génie des matériaux</td>
<td>Obl.</td>
<td>English</td>
<td>1</td>
<td></td>
<td></td>
<td>Project report</td>
<td>30h</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>15</td>
</tr>
</tbody>
</table>

Frequency
Every year

Summary
This course introduces the basic principles of electrochemistry, focusing on corrosion research. It covers the basics of corrosion testing and monitoring techniques, such as linear polarization, cyclic voltammetry and electrochemical impedance spectroscopy (EIS).

Content
This course introduces the basic principles of electrochemistry, focusing on corrosion research. It covers the basics of corrosion testing and monitoring techniques, such as linear polarization, cyclic voltammetry and electrochemical impedance spectroscopy (EIS) for routine applications such as rapid screening of corrosion inhibitors, materials selection, failure analysis, corrosion rate measurement, life prediction, evaluation of paints, coatings, electroplating, determination of resistance to local corrosion such as pitting and crevice corrosion and studies of passivating systems.

Introduction to Corrosion
The basics of the electrochemical theory of corrosion will be presented: corrosion reactions, electrochemical nature of corrosion, electrode potential (half cells, corrosion cells), electrochemical kinetics (charge transfer and mass transport control), corrosion in acids, corrosion in neutral solutions.

Module 1 Uniform corrosion rate
The theoretical concepts and the experimental issues underlying the measurement of uniform corrosion rates using electrochemical methods will be discussed: Tafel extrapolation, polarization resistance, reference electrodes, galvanostatic and potentiostatic methods, potential drops due to ohmic resistance of the solution, sample preparation.

Module 2: Passivity and localized corrosion
The basics of metals/alloys passivation mechanisms including a short presentation of the most relevant characterization methods (electrochemical/surface analytical) to assess oxide film growth, stability and composition will first be introduced. The passivity breakdown and different localized corrosion propagation mechanisms will then be described. Critical controlling factors such as environment and aggressive ion types but also examples of alloying element influence will finally be discussed.

In the second part, concepts and dedicated electrochemical methods/setup related to crevice corrosion and aeration cells will be discussed. The theory and measurement of oxygen concentration/diffusion control will briefly be introduced in relation with the lab work.

Module 3
This module will be focused on the method of Electrochemical Impedance Spectroscopy. The basics on AC and DC electronic circuit and how this can be correlated to real electrochemical cases will taught. It will be based on concrete example to see how to extract practical information on the system, based on impedance measurements. Programming on the NOVA software and the best parameters of the EIS measurements will also be discussed.

Keywords
electrochemistry
corrosion

Learning Prerequisites
Recommended courses
Introduction to materials, General chemistry