Summary
The first part of the course (~20%) is devoted to green chemistry and life cycle assessment. The remainder focuses on process intensification (fundamentals, detailed description of a few selected technologies, with a special focus on microreactors). Examples and exercises are included.

Content

Elements of Green Chemistry
Survey of the chemical industry; green chemistry basics; green metrics (atom economy, reaction mass efficiency, atom efficiency, effective mass yield, carbon efficiency, process mass intensity, energy intensity); industrial examples (phenol and Carbaryl production); green engineering principles

Essentials of Life Cycle Assessment
LCA aims and methodology; LCA metrics (impact categories); example: dimethyl carbonate production

Modular Plants
General description and advantages; financial aspects; example

Process Intensification
General principles and benefits; description of selected process intensification technologies (rotating packed beds, thin-film and rotor-stator spinning-disc reactors, oscillatory baffled reactors / crystallizers); moving from batch to continuous

Miniaturization
Characteristic process times; coupling of physico-chemical phenomena; effect of scale on process parameters

Effect of Mixing on Chemical Reactions
Macro-, meso- and micro-mixing; segregation; effect of total segregation on reactor performance; effect of partial segregation on reactor performance and selectivity; experimental mixing time characterization via physical and chemical methods

Mixing in Microchannels
Flow regimes in microchannels; mixing by pure diffusion; mixing time for laminar mixing in a shear field

Microreactors
Overview and benefits; passive micromixers (parallel lamination, serial lamination, chaotic mixers and segmented flow): flow regimes, mixing principles & examples; active micromixers (pressure disturbance, electrokinetic); commercial systems; industrial examples

RTD in Microreactors
Microchannels; fixed-beds; static mixers; coiled tubes and flow inverters; segmented flow

Heat management in micro- and milli-reactors
Heat transfer in various geometries; thermal sensitivity; multipoint injection

Elements of photochemical reaction engineering

Keywords
Green chemistry and engineering, life cycle assessment, process intensification, micro-structured reactors

Learning Prerequisites
Required courses
Transport phenomena
Chemical kinetics
Thermodynamics
Chemical reaction engineering
Thermal safety of chemical processes
Separation processes

Learning Outcomes
By the end of the course, the student must be able to:
• Estimate the "greenness" of a chemical process using the appropriate criteria and metrics
• Choose the best technology for carrying out a chemical reaction based on the relevant physico-chemical, economical and ecological criteria
• Design intensified processes with enhanced performance and sustainability
• Assess / Evaluate the impact of various technologies and operating conditions on key process factors such as heat transfer, mass transfer, mixing time and residence time distribution
• Describe the influence of micromixing on reactor performance and product distribution in homogeneous systems.
• Compute the residence time distribution, heat transfer performance and mixing time in micro-structured devices
• Design thermally safe micro- or milli-flow processes for highly exothermic reactions

Teaching methods
ex-cathedra with integrated exercise sessions

Expected student activities
Take notes during lectures
Participate to exercise sessions

Assessment methods
One final exam (written)

Resources
Bibliography

Ressources en bibliothèque
• Micro process engineering / Hessel
• Green process engineering / Poux
• Process intensification for green chemistry / Boodhoo
• Microstructured devices for chemical processing / Kashid
• Novel process windows / Hessel
• Sustainable industrial processes / Cavani

Notes/Handbook
Slides in moodle