Course: Machine learning

Jaggi Martin, Urbanke Rüdiger

Coursus

- Biocomputing minor
- Communication systems minor
- Computational Neurosciences minor
- Computational science and Engineering
- Computer and Communication Sciences
- Computer science minor
- Cybersecurity
- Data Science
- Data science minor
- Digital Humanities
- Electrical Engineering
- Electrical and Electronical Engineering
- Financial engineering
- Life Sciences Engineering
- Management, tech et entr.
- SC master EPFL
- Sciences du vivant

Sem.	Type
H | Obl.
H | Opt.
MA1, MA3 | Opt.
MA1, MA3 | Obl.
H | Opt.
MA1, MA3 | Obl.
MA1, MA3 | Obl.
MA1, MA3 | Obl.
MA1, MA3 | Obl.

Language: English
Credits: 7
Session: Winter
Semester: Fall
Exam: Written
Workload: 210h
Weeks: 14
Hours: 6 weekly
Lecture: 4 weekly
Exercises: 2 weekly
Number of positions: 40

Remarque
The first course (September 18) will take place in the Forum of Rolex Learning Center

Summary
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

Content
1. Basic regression and classification concepts and methods: Linear models, overfitting, linear regression, Ridge regression, logistic regression, and k-NN.
2. Fundamental concepts: cost-functions and optimization, cross-validation and bias-variance trade-off, curse of dimensionality.
4. Dimensionality reduction: PCA and matrix factorization, word embeddings
5. Advanced methods: generalized linear models, SVMs and Kernel methods, Neural networks and deep learning

Keywords
- Machine learning, pattern recognition, deep learning, data mining, knowledge discovery, algorithms

Learning Prerequisites

Required courses

• Analysis I, II, III
• Linear Algebra
• Probability and Statistics (MATH-232)
• Algorithms (CS-250)

Recommended courses
• Introduction to differentiable optimization (MATH-265)
• Linear Models (MATH-341)

Important concepts to start the course
• Basic probability and statistics (conditional and joint distribution, independence, Bayes rule, random variables, expectation, mean, median, mode, central limit theorem)
• Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD)
• Multivariate calculus (derivative w.r.t. vector and matrix variables)
• Basic Programming Skills (labs will use Python)

Learning Outcomes
By the end of the course, the student must be able to:
• Define the following basic machine learning problems: Regression, classification, clustering, dimensionality reduction, time-series
• Explain the main differences between them
• Implement algorithms for these machine learning models
• Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
• Implement machine learning methods to real-world problems, and rigorously evaluate their performance using cross-validation. Experience common pitfalls and how to overcome them
• Explain and understand the fundamental theory presented for ML methods

Teaching methods
• Lectures
• Lab sessions
• Course Projects

Expected student activities
Students are expected to:
• attend lectures
• attend lab sessions and work on the weekly theory and coding exercises
• work on projects using the code developed during labs, in small groups

Assessment methods
• Written final exam
• Continuous control (Course projects)

Supervision
Office hours Yes
Assistants Yes
Forum Yes

Resources
Virtual desktop infrastructure (VDI)
No

Bibliography
• Christopher Bishop, Pattern Recognition and Machine Learning
• Kevin Murphy, Machine Learning: A Probabilistic Perspective
• Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning
• Michael Nielsen, Neural Networks and Deep Learning
• (Jerome Friedman, Robert Tibshirani, Trevor Hastie, The elements of statistical learning: data mining, inference, and prediction)

Ressources en bibliothèque
• The elements of statistical learning: data mining, inference, and prediction / Friedman
• Pattern Recognition and Machine Learning / Bishop
• Neural Networks and Deep Learning / Nielsen
• Machine Learning: A Probabilistic Perspective / Murphy
• Understanding Machine Learning / Shalev-Shwartz

Notes/Handbook
https://github.com/epfml/ML_course

Websites
• https://www.epfl.ch/labs/mlo/machine-learning-cs-433/