COM-402 Information security and privacy
Troncoso Carmela, Hubaux Jean-Pierre, Oechslin Philippe

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cybersecurity</td>
<td>MA1, MA3</td>
<td>Obl.</td>
</tr>
<tr>
<td>Data Science</td>
<td>MA1, MA3</td>
<td>Obl.</td>
</tr>
<tr>
<td>Informatique et communications</td>
<td></td>
<td>Obl.</td>
</tr>
<tr>
<td>Informatique</td>
<td>MA1, MA3</td>
<td>Obl.</td>
</tr>
<tr>
<td>Ing. finance</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Data science</td>
<td>H</td>
<td>Opt.</td>
</tr>
<tr>
<td>SC master EPFL</td>
<td>MA1, MA3</td>
<td>Obl.</td>
</tr>
<tr>
<td>Science et ing. computationelles</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Summary
This course provides an overview of information security and privacy topics. It introduces students to the knowledge and tools they will need to deal with the security/privacy challenges they are likely to encounter in today's Big Data world. The tools are illustrated with relevant applications.

Content
- Overview of cyberthreats
- Exploiting vulnerabilities
- Authentication, access control, compartmentalization
- Basic applied cryptography
- Operational security practices and failures
- Machine learning and privacy
- Data anonymization and de-anonymization techniques
- Privacy enhancing technologies
- Blockchain and decentralization

Keywords
security, privacy, protection, intrusion, anonymization, cryptography

Learning Prerequisites
Required courses
Basic Python programming or better
Basec networking knowledge
Learning Outcomes
By the end of the course, the student must be able to:

- Understand the most important classes of information security/privacy risks in today's "Big Data" environment
- Exercise a basic, critical set of "best practices" for handling sensitive information
- Exercise competent operational security practices in their home and professional lives
- Understand at overview level the key technical tools available for security/privacy protection

Expected student activities
Attending lectures, solving assigned problems and "hands-on" exercises, reading and demonstrating understanding of provided materials.

Assessment methods
Continuous assessment via homework exercises, quizzes, midterm exam and final written exam.