MATH-409
Algebraic curves and cryptography

Cursus
Cybersecurity MA2, MA4 Opt.
Informatique MA2, MA4 Opt.
Ing.-math MA2, MA4 Opt.
Mathématicien MA2 Opt.
SC master EPFL MA2, MA4 Opt.

Sem.
Language English
Credits 5
Session Summer
Semester Spring
Exam Written
Workload 150h
Weeks 14
Hours 4 weekly
Lecture 2 weekly
Exercises 2 weekly
Number of positions

Remarque
Cours donnés en alternance tous les deux ans (pas donné en 2019-20)

Summary
The goal of this course is to introduce basic notions from public-key cryptography based on algebraic curves over finite fields. We will introduce basic cryptographic schemes as well as discuss in-depth the discrete logarithm problem for elliptic and Jacobians of higher genus curves.

Content
Topics may include, but are not limited to:
- Introduction to algebraic curves
- Elliptic and hyperelliptic curves
- Jacobians of algebraic curves
- Cantor arithmetic
- Elliptic curve discrete logarithm problem
- Index calculus methods for Jacobians
- Pairing-based cryptography

Keywords
algebraic curves over finite fields, public key cryptography, discrete logarithms, pairing-based cryptography

Learning Prerequisites
Required courses
Abstract Algebra required (groups theory, rings, fields, field extensions, finite fields)

Recommended courses
- Math 317 (Galois theory)
- Math 489 (Number Theory in Cryptography)
- COM-401 (Security and Cryptography)

Teaching methods
Weekly lectures, problem sets and programming assignments.
Assessment methods
written exam

Resources
Bibliography
• P. Griffiths, *Introduction to Algebraic Curves*
• I. Blake, G. Seroussi, and N. Smart, *Elliptic Curves in Cryptography*
• I. Blake, G. Seroussi, N. Smart, *Advances in Elliptic Curve Cryptography*

Ressources en bibliothèque
• *Introduction to Algebraic Curves / Griffiths*
• *Advances in Elliptic Curve Cryptography / Blake & al.*
• (electronic version)
• *Elliptic Curves in Cryptography / Blake & al.*