Advanced topics in nuclear reactor materials

Pouchon Manuel A., Spaetig Philippe, Streit Marco

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie nucléaire</td>
<td>MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language: English

Credits: 4

Session: Winter

Semester: Fall

Exam: During the semester

Workload: 120h

Weeks: 14

Hours: 3 weekly

- Lecture: 2 weekly
- Exercises: 1 weekly

Number of positions: 1

Remarque

Cours donné par EPFL à PSI-Villigen

Summary

To comprehend advanced aspects of materials science as applied to nuclear power (fission and fusion), to get acquainted with materials for advanced plants, advanced damage characterization and life-time assessments

Content

- Materials for advanced nuclear plants
- Fuel behaviour under high burnup conditions
- Fuel behaviour under hypothetical accident conditions (RIA, LOCA)
- Important materials parameters
- Response of materials to high temperatures / high irradiation levels
- Advanced analytical tools for damage assessment
- Modeling of materials behaviour
- Working with highly radioactive materials
- Discussion of results from current research projects

Learning Prerequisites

Recommended courses

- Nuclear fuels & materials

Learning Outcomes

By the end of the course, the student must be able to:

- Systematize Fuel behaviour under high burnup conditions
- Specify the role of material parameters in plant integrity assessment
- Formulate material behaviour under high temperature/high irradiation level

Transversal skills

- Make an oral presentation.
- Summarize an article or a technical report.
- Access and evaluate appropriate sources of information.
Teaching methods
Course takes place at PSI