Numerical integration of stochastic differential equations

Blumenthal Adrian

Summary

In this course we will introduce and study numerical integrators for stochastic differential equations. These numerical methods are important for many applications.

Content

- Introduction to stochastic processes
- Itô calculus and stochastic differential equations
- Numerical methods for stochastic differential equations (strong and weak convergence, stability, etc.)
- Stochastic simulations and multi-level Monte-Carlo methods

Learning Prerequisites

Recommended courses
- Numerical Analysis, Advanced probability

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze the convergence and the stability properties of stochastic numerical methods
- Implement numerical methods for solving stochastic differential equations
- Identify and understand the mathematical modeling of stochastic processes
- Manipulate Itô calculus to be able to perform computation with stochastic differential equations
- Choose an appropriate numerical method to solve stochastic differential equations

Teaching methods

Ex cathedra lecture, exercises in classroom

Assessment methods

Written examination (in case of failure the second exam will be an oral examination).

Dans le cas de l’art. 3 al. 5 du Règlement de section, l’enseignant décide de la forme de l’examen qu’il communique aux étudiants concernés.

Supervision
Office hours: Yes
Assistants: Yes
Forum: No

Resources

Ressources en bibliothèque

- An Introduction to Stochastic Differential Equations / Evans
- Stochastic Numerics for Mathematical Physics / Milstein
- Numerical Solution of Stochastic Differential Equations / Kloeden

Notes/Handbook

Websites

- http://anmc.epfl.ch