MSE-471 Biomaterials (pour MX)

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science et génie des matériaux</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language | English
Credits | 4
Session | Winter
Semester | Fall
Exam | Written
Workload | 120h
Weeks | 14
Hours | 4 weekly
Lecture | 2 weekly
Practical work | 2 weekly
Number of positions |

Remarque
pas donné en 2019-20

Summary
The course introduces the main classes of biomaterials used in the biomedical field. The interactions with biological environment are discussed and challenges highlighted. State of the art examples per type of material are discussed. Students will generate a biomaterial and study cell compatibility.

Content
Lecture 1. Intro to biomaterials
Lecture 2. Surfaces
Lecture 3. Naturally derived biomaterials
Lecture 4. Manmade biomaterials
Lecture 5. Polymers
Lecture 6. Materials for tissue engineering
Lecture 7. Materials for immune engineering
Lecture 8. Materials for neuroprosthetics
Lecture 9. Nanoparticles
Lecture 10. Targeting and drug delivery
Lecture 11. Programmable biomaterials
Lecture 12. Translation to industry
Lecture 13. Regulatory aspects and trials
Lecture 14. Revision and conclusion

Keywords
Biomaterials, biocompatibility, biofunctionality, implants, nanotechnology, tissue engineering, drug-delivery, nanoparticles.

Learning Prerequisites
Required courses
Introduction to materials science

Recommended courses
Materials, metallurgy, polymer, ceramics.

Learning Outcomes
By the end of the course, the student must be able to:
- Estimate a biomaterial in function of the application
- Compare developments of new biomaterials
- Describe the interactions with biological environment
- Describe the translation of a biomaterial to commercial use
- Design nanoparticle for targeting/drug delivery
- Compare biocompatibility of various materials
- Describe requirements to limit toxicity

Transversal skills
- Communicate effectively with professionals from other disciplines.
- Respect relevant legal guidelines and ethical codes for the profession.
- Collect data.
- Access and evaluate appropriate sources of information.

Teaching methods
Ex cathedra and invited speakers
Practicum at DLL laboratories: development and characterization of a soft biomaterial as scaffold for cell proliferation.

Expected student activities
Attendance at lectures.
Presence at practicum (also at hours not in lab)
Participation at all experimental projects

Assessment methods
Written exam
100% participation at DLL practicum

Supervision
Office hours Yes
Assistant Yes
Forum No

Resources
Ressources en bibliothèque
- Biological performance of materials : fundamentals of biocompatibility / Black
- Traité des matériaux 7 - Comportement des matériaux dans les milieux biologiques / Schmidt
- Biomaterials science : an introduction to materials in medicine / Ratner
- Bone Repair Biomaterials / Planell

Notes/Handbook
All necessary documentation will be made available in the Moodle of this course