Statistics for genomic data analysis

MATH-474

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing.-math</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mathématicien</td>
<td>MA2</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language English
Credits 5
Session Summer
Semester Spring
Exam During the semester
Workload 150h
Weeks 14
Hours 4 weekly
Lecture 2 weekly
Exercises 2 weekly
Number of positions

Remarque

pas donné en 2019/20

Summary

After a short introduction to basic molecular biology and genomic technologies, this course covers the most useful statistical concepts and methods for the analysis of genomic data.

Content

- Molecular biology and technology background
- R software and BioConductor packages
- Robust regression/High-density oligo array signal quantification/Quality assessment for Affymetrix GeneChips
- Empirical Bayes method for identifying differentially expressed genes
- Linear models for designed experiments
- Hypothesis testing, ROC curves, multiple hypothesis testing
- Gene set testing
- Cluster analysis
- Classical and machine learning methods for classification
- Sequence data (NGS) analysis
- Generalized linear modeling for differential expression (NGS)
- Additional topics as time permits: e.g. Meta-analysis, genome-wide association studies (GWAS)

Keywords

statistics; statistical methods; data analysis; DNA; RNA; mRNA; genomics; genomic data; microarray; sequencing data; NGS; NGS technologies; machine learning; R statistical software; BioConductor

Learning Prerequisites

Important concepts to start the course
- Elementary statistics
- Previous experience with R is helpful (but not necessary)

Learning Outcomes
By the end of the course, the student must be able to:
 • Apply appropriate methods to analyze genomic data
 • Carry out targeted analyses of genomic data
 • Design genomic experiments

Transversal skills
 • Access and evaluate appropriate sources of information.
 • Write a scientific or technical report.

Teaching methods
Lectures and computer practical exercises

Expected student activities
Regular attendance in class, practical exercises, prepare a short report (max. 10 pages) on an analysis of genomic data using tools and methods from the course

Assessment methods
Evaluation is based on a written report of a genomic data analysis project.