Financial big data

Challet Damien

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing. finance</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Ingénierie financière</td>
<td>H</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Remarque

Only for MA3

Summary

The course’s first part introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques to financial analysis, in particular to investment strategy backtesting.

Content

Big Data

1. A brief history of technology: storage, computing power, efficiency
2. Financial data sources and acquisition
3. Data cleaning and formatting
4. Visualization techniques for financial data
5. Robust estimators for financial data
6. Multicore/GPU and cluster computing in R and Python

Application to financial data

1. Dimensionality reduction
 Correlation matrix cleaning with random matrix theory
 Random Factors
 Clustering of assets and days
2. Investment strategies
 Backtesting and non-stationarity
 Machine learning and trading

Keywords

Big Data, stylized facts, data wrangling, dimension reduction, machine learning, trading strategy, portfolio optimization, realized risk and profits

Learning Prerequisites

Required courses

- Very good programming skills (required) and a first experience with R or/and Python (highly recommended).
• Good knowledge of the probability and statistics concepts taught in the first (two) year(s) at EPFL. This includes the Central Limit Theorem and its important applications in statistics.

Recommended courses

• Advanced statistics
• Econometrics
• Investments
• Programming with R, or Python.

Important concepts to start the course

See above

Learning Outcomes

• Choose appropriate methods and tools to manipulate and analyze complex financial data.
• Conduct efficient data cleaning.
• Implement financial big data analysis using R and Python
• Implement proper computationally intensive strategy backtests
• Plan computing resource usage time
• Infer financial measurables with robust estimates

Transversal skills

• Collect data.
• Write a scientific or technical report.
• Demonstrate a capacity for creativity.
• Access and evaluate appropriate sources of information.
• Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

3 hours of ex-cathedra lectures and supervised applications for 14 weeks

Expected student activities

• Actively participating at lectures
• Completing theoretical and practical exercises during the lectures.
• Writing up of a report which uses the concepts and tools of this course and which contains three parts: data wrangling, dimensionality reduction, backtest of machine learning-based trading strategies.

Assessment methods

• Group projects 100%
Office hours No
Forum Yes
Others Assistant support envisioned depending on attendance
Online (Skype) hours

Resources

Bibliography

Ressources en bibliothèque
• Financial applications of random matrix theory / Potters and Bouchaud
• Empirical properties of asset returns: stylized facts and statistical issues / Cont
• An Introduction to Statistical Learning / James, Witten, Hastie, Tibshirani
• Analysis of Financial Times Series / Tsay

Moodle Link
• http://Course website to be communicated in class.