EE-434
Hardware systems modeling

Vachoux Alain

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIS</td>
<td>MA3</td>
<td>Obl.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Session</td>
<td>Winter</td>
</tr>
<tr>
<td>Semester</td>
<td>Fall</td>
</tr>
<tr>
<td>Exam</td>
<td>Written</td>
</tr>
<tr>
<td>Workload</td>
<td>60h</td>
</tr>
<tr>
<td>Weeks</td>
<td>14</td>
</tr>
<tr>
<td>Hours</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Lecture</td>
<td>2 weekly</td>
</tr>
</tbody>
</table>

Summary

This course addresses the main aspects of the modeling of digital and mixed-signal hardware components and systems using the VHDL and the VHDL-AMS modeling languages.

Content

Introduction

System-on-chip (SoC) design issues. Design methodologies and design tasks. Notion of model. Modeling formalisms for digital and mixed-signal systems. Simulation and synthesis techniques.

Modeling digital hardware components and systems

Essential VHDL language elements and modeling concepts. VHDL synthesis subset. Modeling combinational and sequential/synchronous behaviors. Register-transfer level (RTL) modeling: modeling control (finite-state machines - FSM), modeling datapath, pipelining, generic RTL architecture (FSMD, algorithmic state machine (ASM)). From algorithm to digital hardware.

Modeling analog and mixed-signal hardware components and systems

Keywords

Digital hardware modeling. Analog and mixed-signal hardware modeling. VHDL. VHDL-AMS.

Learning Prerequisites

Required courses

Circuits and systems. Logic systems. Integrated digital circuits design. Analog circuits design.

Important concepts to start the course

Circuit and systems theory. Combinational and sequential logic components. Analog functional blocks (operational amplifier, filter, etc.).

Learning Outcomes

By the end of the course, the student must be able to:

- Describe available modeling formalisms for digital and mixed-signal hardware design.
- Produce quality and reusable VHDL and VHDL-AMS models.
- Choose proper modeling techniques.
- Assess / Evaluate the quality of a model w.r.t. its intended use.

Teaching methods
Lectures with integrated exercises.

Expected student activities

Assessment methods
Homework exercises. Midterm project. Final examination including a quiz and problems.

Supervision

<table>
<thead>
<tr>
<th>Office hours</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Resources

- Virtual desktop infrastructure (VDI)
 Yes

Bibliography

Ressources en bibliothèque

- The System Designer’s Guide to VHDL-AMS / Ashenden
- VHDL-AMS and Verilog-AMS / Pêcheux
- Verification Methodology Manual for SystemVerilog / Bergeron
- VHDL for Logic Synthesis / Rushton

Notes/Handbook

Course notes. VHDL and VHDL-AMS documentation. EDA tools user’s guide.

Websites

- http://eda-tuts.epfl.ch/VHDLNutshell
- http://eda-tuts.epfl.ch/VHDLSimSyn

Moodle Link