Scientific project design in translational neurosciences
Gräff Johannes, Le Coutre Johannes

Remarque
only one registration per student to a scientific thinking course

Summary
The goal of this course is to instruct the student how fundamental scientific knowledge, acquired through the study of fundamental disciplines, including biochemistry, genetics, pharmacology, physiology, genomics, cell and molecular biology can be applied for drug discovery and development.

Content
We will illustrate how basic scientific knowledge translates into medical advances and serves as the stepping stone to identify and validate new disease targets, to develop drugs, and to improve diagnosis, prevention, and treatment of diseases of the nervous system. We will show these principles by examples, which will focus on conditions of the nervous system, such as neurodegenerative disorders, cognitive enhancement, taste perception but also calorie detection and reward representation in the brain.

Content:
- General principles of drug development [target identification, target validation, screening, hit to lead optimization, process research (optimization of the chemical synthesis for the pilot plant and factory), efficacy, toxicity / safety, preclinical & clinical development
- Development and use of animal models in biomedical research
- Pathophysiology and therapeutic strategies for disorders of energy balance [fasting-feeding cycles, nutrition, Perception Physiology, hormonal control of energy homeostasis, obesity, anorexia, prevention and treatments]
- Pathophysiology and therapeutic strategies for treating neurodegenerative disease, including Alzheimer's and Parkinson's disease [development and insights from genetic and toxin-based animal models, genetic basis of disease, disease pathways and processes, neuropathology, clinical diagnosis, surgical and drug treatments, neuroimaging, biomarker discovery, target validation]
- Neuroepigenetics
- The business environment [markets, patients/consumers, competitors]
- Project management [sponsors, stake-holders and their expectations, checkpoints, milestones, execution]
- Commercialization [business plan, regulatory, product launch, Intellectual property]
- Case studies

Learning Prerequisites

Required courses

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioingénierie</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Ingénierie des sciences du vivant</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences du vivant</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>
Bachelor in Life Science

Teaching methods
After ex-cathedra introduction sessions, the teaching proceeds with weekly sessions of office hours and group work in close collaboration with the teachers.

Assessment methods
- Written project
- Oral defense of the project during the semester

Resources
Bibliography
- Kenakin T.P. "A pharmacology primer, theory, applications and methods" (2006)

En bibliothèque / in libraries :
(cliquez sur le lien pour consulter les informations du réseau de bibliothèque suisse / click on the link to consult information of the Swiss network of libraries)
A pharmacology primer : theory, applications, and methods / Terry Kenakin, 2009
(http://opac.nebis.ch/F?local_base=nebis&con_lng=FRE&func=find-b&find_code=020&request=978-0-12-374585-9)
Molecules and medicine / E.J. Corey, B. CzakÃ³ and L. KÃ©rli, 2007
(http://opac.nebis.ch/F?local_base=nebis&con_lng=FRE&func=find-b&find_code=020&request=978-0-470-22749-7)

Prerequisite for
Master in LST