Summary

Study groups generated by reflections.

Content
- Orthogonal transformations in a real Euclidean space.
- Groups generated by reflections. Coxeter groups, root systems. Crystallographic groups. Fundamental regions for Coxeter groups.
- Affine Coxeter groups. Classification.
- Applications and connections with other fields.

Keywords
Orthogonal transformations, reflection, regular polytop, root system, simple root, positive root, Coxeter group, Coxeter graph, crystallographic group, Weyl group, fundamental region, simply laced root system, the longest element of a Coxeter group, Coxeter element, Coxeter plane, Coxeter number, root lattice, affine Weyl group, the highest root, finite and affine Dynkin diagrams.

Learning Prerequisites

Required courses
Linear algebra I-II, Group theory

Recommended courses
Linear algebra I-II, Geometry I-II, Group theory, Lie algebras, Linear representations of finite groups

Learning Outcomes
By the end of the course, the student must be able to:
- Apply concepts and ideas of the course
- Reason rigorously using the notions of the course
- Choose an appropriate method to solve problems
- Identify the concepts relevant to each problem
- Apply known methods to solve problems similar to the examples shown in the course and in the problem sets
- Solve new problems using the ideas of the course
- Implement appropriate methods to identify and study the groups generated by reflections
Teaching methods
Lectures and exercise sessions

Assessment methods
Written exam
Dans le cas de l’art. 3 al. 5 du Règlement de section, l’enseignant décide de la forme de l’examen qu’il communique aux étudiants concernés.

Supervision
Office hours No
Assistants Yes
Forum No

Resources
Bibliography

Ressources en bibliothèque
• (electronic version)
• Reflection Groups and Coxeter Groups / Humphreys
• Finite Reflection Groups / Benson & Grove
• Combinatorics of coxeter groups / Björner & Brenti

Moodle Link
• https://moodle.epfl.ch/course/view.php?id=15824