ChE-330 Fluid mechanics and transport phenomena
Sivula Kevin

Summary
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral balances are introduced in the context of boundary layers and transfer coefficients.

Content
- Equations for molecular flow: material (Fick's law); heat (Fourier's law); momentum (Newton's law).
- Analogy between the three types of transfer (linked by their diffusivities).
- Non-Newtonian fluids (Bingham and Ostwald models, thixotropic and rheopectic fluids).
- Differential and integral mass balance.
- Derivation and application of the continuity equation.
- Integral and differential momentum balance.
- The Navier-Stokes equation (analytical solution for simple systems).
- The perfect fluid: Euler and Bernoulli equations, validity domain.
- Pressure drop in a complex flow circuit. Use of the Moody diagram.
- Momentum, heat and mass transfer in multiple variables systems (solving partial differential equations).

Keywords
Transport phenomena, Continuity equation, Navier-Stokes equation, Shell balance, Euler and Bernoulli equations, transfer in a system with multiple variables, transfer coefficient.

Learning Prerequisites
Required courses
ChE 201 Introduction to Chemical Engineering
ChE 204 Introduction to transport phenomena
Basic knowledge of mass and energy balances and the three fundamental laws of transport phenomena (Fick's law, Fourier's law, and Newton's law) are needed.

Teaching methods
Lectures with exercises

Expected student activities
Solution of exercises

Assessment methods
Continuous control
Two written tests during the semester

Resources

Bibliography

Ressources en bibliothèque
• Transport phenomena / Bird