Systems and architectures for signal processing

Cursus

Génie électrique et électronique

Sem. MA1, MA3
Type Opt.

Language English
Credits 2
Session Winter
Semester Fall
Exam Written
Workload 60h
Weeks 14
Hours 2 weekly
Lecture 2 weekly

Summary

Study of the essential components and implementation technologies of digital signal processing and communication systems from the theoretical, algorithmic and system implementation point of view.

Content

Multimedia algorithms and architectures
Recall of basic elements of video compression theory (coding models and entropy coders), digital TV processing, acquisition and final rendering stages, system requirements, standard and non-standard algorithms, constraints and video architectures. MPEG algorithms and systems architectures, future trends in video and multimedia processing.

Digital integrated systems
Overview of the state of the art of the system components architectures for video and signal processing. System behavior of different types of memories, relation with algorithmic requirements. Features and limits of current and next generation deep-submicron technologies. New challenges of CMOS based processing architectures: low power, many and multi-core platforms.

Practical design case studies
Specification and modeling of simple components of a video system communication component, analysis, optimization of the algorithmic behavior and analysis of the system implementation challenges.

Keywords

signal processing systems, video compression systems, communication systems, system architecture

Learning Prerequisites

Recommended courses
Signal processing; Programming II; Information, Computation, Communication.

Important concepts to start the course
Basic theory of digital signal processing, C/C++ or java programming, basics of digital electronics.

Learning Outcomes

By the end of the course, the student must be able to:
• Assess / Evaluate the function and the behavior of the processing components of a video processing and communication system/application
• Formulate the basic theory of coding
• Use the basic theory of multi-dimensional signal processing for the understanding of acquisition and display of video signals
• Recognize the underlying theoretical (algorithmic) and implementation components that define its performance
• Detect the possible improvements and optimizations on both algorithmic and implementation sides
• Deduce the implementation challenges of an application design case in terms of processing, synchronization, real-time performance
• Investigate trade-offs between performance and implementation complexity
• Specify the essential behaviors and technological limitations of main types of memories that define systems implementation performance
• Quantify memory system bandwidth requirements of specified algorithms

Transversal skills
• Use a work methodology appropriate to the task.
• Assess progress against the plan, and adapt the plan as appropriate.
• Use both general and domain specific IT resources and tools
• Write a scientific or technical report.
• Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods
Lectures and projects

Expected student activities
Attendance at lectures, reading written material, doing a practical project.

Assessment methods
Written examination assessing theoretical knowledge acquired, evaluation of the project developed in terms of comprehension of the problem and quality of the developed solution (correctness and effectiveness).

Resources
Bibliography
P.A. Sarginson: "MPEG-2 Overview of the systems layer", BBC RD 1996/2.

Ressources en bibliothèque
• The MPEG representation of digital media / Chiariglione
• De-Interlacing and Overview / De Haan
• The Mathematical Theory of Communication / Shannon
• Universal modeling and coding / Rissanen

Notes/Handbook
pdf of ex-cathedra slides are available on a web site at each lesson of the course

Prerequisite for
"Information technology" orientation