Lab in data science

Summary

This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipeline, from data acquisition to extracting valuable insights applied to real-world problems.

Content

1. Crash-course in Python for data scientists

 • Python packages: NumPy, Pandas, Matplotlib, Scikit-Learn
 • Interactive data science with web-based notebooks
 • Project #1: Curating data from a network of CO2 sensors

2. Distributed computing with an Apache Hadoop distribution

 • Understand main constituents: HDFS, Parquet, HBase, Hive, Zookeeper, Ambari, Spark, Spark Streaming, Yarn, Mesos, etc.
 • Project #2.1: Prepare a sandbox distribution

 • HDFS internals, best practices
 • Project #2.2: Configure HDFS, prepare files used in subsequent projects, choose appropriate compression, etc.

3. Distributed processing with Apache Spark

 • RDDs and best practices for order of operations, data partitioning, caching
 • Data science packages in Spark: GraphX, MLlib, etc.
 • Project #3: Large-scale processing of genomic data
4. Real-time data acquisition using Apache NiFi

• Stream processing using Apache Spark Streaming
• **Project #4**: Indexing tweets with NiFi and Solr

5. Final project - Summing it all up

• Tapping into live traffic data sources from a major city: Acquisition & curation of live traffic sensors, estimation of speed of traffic on different road segments, and prediction of congestion using Spark, HBase, Kafka.

Keywords
Data Science, IoT, Machine Learning, Predictive Modeling, Big Data, Stream Processing, Apache Spark, Hadoop, Large-Scale Data Analysis

Learning Prerequisites

Required courses
Students must have prior experience with at least one general-purpose programming language.

Important concepts to start the course
It is recommended that students familiarize themselves with concepts in statistics and standard methods in machine learning.

Learning Outcomes

By the end of the course, the student must be able to:
• Use standard Big Data tools and Data Science libraries
• Carry out real-world projects with a variety of real datasets, both at rest and in motion
• Design large scale data science and engineering problems
• Present tangible solution to a real-world Data Science problem

Transversal skills

• Demonstrate a capacity for creativity.
• Plan and carry out activities in a way which makes optimal use of available time and other resources.
• Write a scientific or technical report.

Teaching methods

• Hands-on lab sessions

• Homework assignments
• Final project

... using real-world datasets and Cloud Compute & Storage Services

Expected student activities
Students are expected to:

- STUDY: Attend the lab sessions
- WORK: Complete homework assignments
- ENGAGE: Contribute to the interactive nature of the class
- COLLABORATE: Work in small groups to provide solutions to real-world problems
- EXPLAIN: Present ideas and results to the class

Assessment methods

- 60% continuous assessment during the semester
- 40% final project, done in small groups

Supervision

<table>
<thead>
<tr>
<th>Office hours</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants</td>
<td>Yes</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Resources

Virtual desktop infrastructure (VDI)
No

Bibliography

- pyGAM - https://github.com/dswah/pyGAM

A list of additional readings will be distributed at the beginning of the course.

Ressources en bibliothèque

Websites

- http://www.datascience.ch