Introduction to environmental engineering

Bernier-Latmani Rizlan, Holliger Christof, Nenes Athanasios

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences et ingénierie de l'environnement</td>
<td>BA1</td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Language: English
Coefficient: 4
Session: Winter
Semester: Fall
Exam: During the semester
Workload: 120h
Weeks: 14
Hours: 4 weekly
Lecture: 2 weekly
Exercises: 2 weekly

Summary
This introduction to Environmental Engineering is meant to show the students how upcoming courses in mathematics, physics, chemistry, biology and other areas will be used to gain a scientific understanding of environmental problems and then help to solve them.

Content
Topics covered include (among other topics) environmental engineering concepts, water quality and treatment, risk analysis and management, forecasting, groundwater management and remediation, resource use, energy production, air pollution, climate processes, past, current and future climate.

Keywords
Water pollution, wastewater treatment, groundwater pollution, remediation, wells, exponential growth, logistic model, water resources, air pollution, climate, climate change

Learning Prerequisites
Important concepts to start the course
Basic knowledge (high school level) in mathematics, physics, chemistry and biology

Learning Outcomes
By the end of the course, the student must be able to:
- Identify correct and wrong statements and argue why
- Solve simple problems on water pollution and wastewater treatment
- Describe steady groundwater flow using Darcy's Law
- Recognize different mechanisms controlling fate of contaminants in groundwater
- Derive rates of change in environmental and human systems
- Explain the physical, chemical and microbial processes that influence the security of nuclear waste disposal
- Recognize important chemical actors in air pollution and their impacts on public health and the environment
- Explain the main drivers of past, present and future climate

Teaching methods
Lecture ex cathedra and exercises

Expected student activities
(i) prepare the lectures by reading the parts of the textbook indicated on Moodle, (ii) work on the problems before coming to the exercise sessions

Assessment methods
During the semester, three written tests, each counting for 1/3 grade and lasting 90 min.

Resources

Bibliography

Ressources en bibliothèque
• Introduction to Environmental Engineering and Science / Masters

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=501