**Content**

1. **Introduction** (goal of the course, prerequisite, what is R)
2. **Two examples**: The Jura Gradient Experiment and the Doubs River environmental study
3. **An introduction to basic coding in R**
4. **Designing experiments and observational studies** (Basic Principles, Power Analysis and Number of Replications, Some Types of Experimental Designs, Some Types of Sampling Designs for Observational Studies)
5. **Statistical models** (General linear models, models with quantitative explanatory variables (multiple regression), models with categorical explanatory variables (ANOVA Models), models with both quantitative and categorical explanatory variables (ANCOVA Models), theoretical foundation of the analysis of general linear models)
6. **Principles of data analysis** (Hypotheses to be tested, analysis of multiple regression, analysis of variance (ANOVA), analysis of covariance (ANCOVA), including Model Checking)
7. **Analysing specific experiments**: completely randomized experiment with one factor, completely randomized experiment with subsampling (including mix-effect model), completely randomized experiment with repeated measurements, complete randomized blocks designs, split-plot experiments, Ancova models)
8. **Analysing specific observational studies** (simple random sampling, systematic sampling, stratified sampling), including Principal Component Analysis and Cluster Analysis)
9. **Special Issues** (model assumptions not fulfilled, count data, unbalanced designs, pseudo-repetitions, effect size, contrasts)

**Keywords**

Experimental design, sampling design, linear models, multiple regression, analysis of variance, data analysis, statistical software R.

**Learning Prerequisites**

**Required courses**

**Probability and Statistics**, Prof. Victor Panaretos, Bachelor semester 2" or another course with a similar content (statistical distributions, expected value, error types one and two, parameter estimation, testing hypotheses, statistical significance, simple linear regression, one way analysis of variance).
Multivariate Statistics with R, ENV 521, Prof. Alexandre Buttler

Important concepts to start the course
The basic elements of R (what is R?, installing R, packages and functions, using R as a calculator, importing data with R, reading data, simple descriptive statistics with R, simple tests of hypotheses with R, simple graphs with R)
The basic elements of statistics (sample and population, parameters of position (mean, median, mode), parameters of dispersion (standard deviation, variance, coefficient of variation, range), distribution of a variable (Normal, t, F, chi-square), estimation (standard error, confidence interval), null hypothesis vs alternative hypothesis, error type 1 and error type 2, statistical tests, simple linear regression, one way ANOVA, histogram, scatterplot)
Participants without these prerequisites are invited to update their knowledge before the beginning of the course.

Learning Outcomes

• The participants can
  • Interpret in a coherent way the main elements of the research process: "Research goal and questions", "Design of experiment and/or observational study", "Data collection", "Formulating the statistical model", "Hypothesis to be tested", "Elaborating the R Code", "Data analysis with R" and "Interpreting the results", "Reporting".
  • Design simple experiments (purely randomized experiment (one and two factors), complete randomized block experiments and split-plot experiments) and simple observational studies (simple random -, systematic and stratified sampling)
  • Use the concept of general linear models (GLM) to formulate statistical models for studying relationships between response variables and explanatory variables (quantitative and categorical)
  • Implement the basic concept of data analysis for developing R codes for analyzing multiple regressions and simple ANOVA and ANCOVA models.
  • special issues like "model assumptions not fulfilled", "count data", "repeated measures", "unbalanced designs", "pseudo-replications", "effect size" and "multivariate situations" and how to handle them.

Transversal skills

• Access and evaluate appropriate sources of information.

Teaching methods
Lectures
Exercises

Expected student activities
attendance at the lectures
completing exercises
reading written material (given documents, documents on the web)

Assessment methods
Exercises during the semester (30% of the final grade)
Written exam during the examination period (70% of the final grade)

Supervision
Office hours Yes
Assistants Yes

Resources
Bibliography
  Note: This edition is freely available on internet. Cochran's book is one of the fundamental work on sampling.
  Note: The first edition of this book is freely available on internet.
  Note: Montgomery is one of the leading experts in Experimental Design. The fifth edition of this book is freely available on Internet.
- Quinn Gerry P., Keough Michael J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge. 537 pp., is freely available on Internet

Ressources en bibliothèque
- Numerical Ecology with R
- Sampling Techniques
- Design and Analysis of Experiments
- Ecological Census Techniques. A handbook
- The R book
- Experimental Design and Data Analysis for Biologists
- Design and Analysis of Experiments with R

Websites
- http://many useful Websites will be given during the lectures