Introduction to Frustrated Magnetism

Mila Frédéric

Cursus
Physique

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Session</td>
<td>Oral</td>
</tr>
<tr>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>60h</td>
</tr>
<tr>
<td>Hours</td>
<td>28</td>
</tr>
<tr>
<td>Lecture</td>
<td>28</td>
</tr>
<tr>
<td>Number of positions</td>
<td>30</td>
</tr>
</tbody>
</table>

Frequency
Every 3 years

Remarque
Next time: Fall 2019

Summary
To provide an introduction to all aspects of the rapidly evolving field of frustrated magnetism: 1) New paradigms: spin liquids, spin ice, topological order, ... 2) Basic models and methods 3) Experimental realizations

Content

1) Introduction: definition and overview of frustration in magnetism
2) Basic models
3) Classical frustrated magnets: ground state degeneracy and ground state correlations
4) Order by disorder: ordering by thermal or quantum fluctuations
5) Spontaneous breaking of translational symmetry: valence-bond solids, magnetization plateaux
6) Broken SU(2) symmetry without magnetic order: nematic order
7) Spin liquids: Resonating-Valence Bond liquids, algebraic order, topological order
8) Conclusion: open issues and perspectives

Keywords

Solid state physics, quantum magnetism, frustration, quantum phase transitions

Learning Prerequisites

Required courses

Basic courses of quantum mechanics, statistical physics and solid state physics

Learning Outcomes

By the end of the course, the student must be able to:

- Carry out research dealing with frustrated magnetism.