Structural analysis 
Bostedt Christoph, Emsley Lyndon, Rizzo Thomas

Summary
The aim of this course is to treat three of the major techniques for structural characterization of molecules: mass spectrometry, NMR, and X-ray techniques.

Content
Weeks 2-5: Mass Spectrometry (Prof. Rizzo)
- Introduction to mass spectrometry
- Masses of elements and molecules
- Isotopes and isotope distributions
- Figures of merit: mass accuracy and resolution
- Mass spectrometry instrumentation: Ion sources, mass analyzers, and detectors
- Tandem MS
- Ion mobility MS

Weeks 6-10: NMR (Prof. Emsley)
- Principles of nuclear magnetism
- Quantum description of magnetic resonance leading to the vector model
- Interactions defining the spectrum: chemical shifts, scalar, dipolar and quadrupolar couplings
- Time-domain spectroscopy by pulsed excitation: interaction with radiofrequency fields, coherence, precession, signal induction and the Fourier Transform
- Relaxation and the return to equilibrium
- Polarization transfer
- Multi-dimensional correlation spectroscopy

Weeks (11-14): X-ray (Prof. Bostedt)
- Introduction to x-rays and x-ray sources
- X-ray properties of the elements
- Diffraction and refraction
- Scattering and imaging
- X-ray spectroscopy

Keywords
Spectroscopy; Mass Spectrometry; Magnetic Resonance; NMR; X-Rays; Diffraction; Structure; Chemical Analysis;
Learning Outcomes

By the end of the course, the student must be able to:

- Compute the exact masses of molecules in their various ionic forms
- Use mass spectra of molecules to determine their atomic composition
- Work out / Determine the best choice of ion source and mass analyzer to solve a particular problem
- Analyze tandem mass spectra to determine the parent ion mass
- Describe the characteristic x-ray properties of the elements
- Work out / Determine a crystal structure from a diffraction pattern
- Analyze the atomic composition of a compound from its x-ray spectrum
- Explain the fundamental principles of Magnetic Resonance
- Interpret an NMR spectrum in terms of the interactions involved
- Describe the elements of a pulsed Fourier transform NMR experiment
- Design a strategy for analysis of molecular structure or dynamics by NMR

Transversal skills

- Access and evaluate appropriate sources of information.
- Set objectives and design an action plan to reach those objectives.

Assessment methods

Written Examination

Supervision

Assistants Yes