Machine learning for finance

Ackerer Damien Edouard

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing. finance</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Session</td>
<td>Winter</td>
</tr>
<tr>
<td>Semester</td>
<td>Fall</td>
</tr>
<tr>
<td>Exam</td>
<td>Written</td>
</tr>
<tr>
<td>Workload</td>
<td>60h</td>
</tr>
<tr>
<td>Weeks</td>
<td>14</td>
</tr>
<tr>
<td>Hours</td>
<td>2 weekly</td>
</tr>
<tr>
<td>Lecture</td>
<td>2 weekly</td>
</tr>
</tbody>
</table>

Remarque

MA3 only

Summary

The objective of this course is to introduce machine learning techniques for financial applications such as derivatives pricing, model calibration, portfolio allocation and hedging, investment decision, and risk-management. The course focuses on neural network models with Tensorflow and Keras.

Content

Machine Learning
- Introduction to machine learning
- Neural network models and deep learning
- Reinforcement learning
- Natural language processing

Applications
- Predictive analytics
- Model pricing and calibration
- Scenario generation and stress-testing
- Anomaly detection
- Time series modeling
- Portfolio allocation and hedging
- Textual analysis

Keywords

Machine learning, data analytics, financial derivatives, risk-management, portfolio strategy, textual analysis

Learning Prerequisites

Recommended courses
- Introduction to finance
- Econometrics
• Derivatives
• Advanced derivatives
• Investments

Important concepts to start the course
• Programming knowledge of R or Python required
• Basic Probability and Statistics knowledge
• Some knowledge of finance and financial derivatives

Learning Outcomes
By the end of the course, the student must be able to:
• Describe the principal types of machine learning algorithms
• Implement quality code in Tensorflow
• Assess / Evaluate an algorithm performance
• Identify what methods to use for a given financial problem
• Optimize the evaluation of standard pricing and calibration methods
• Solve numerically complex dynamic control problems in finance
• Construct flexible models for financial predictions and stress-testing
• Investigate textual data with algorithms

Transversal skills
• Plan and carry out activities in a way which makes optimal use of available time and other resources.
• Use a work methodology appropriate to the task.
• Evaluate one's own performance in the team, receive and respond appropriately to feedback.

Teaching methods
Lectures and programming sessions

Assessment methods
• 10% class participation
• 90% group project

Supervision
Office hours No
Assistants No
Forum Yes
Others Sykpe call