Inference for large-scale time series with application to sensor fusion

Guerrier Stéphane, Skaloud Jan

Cursus: Génie civil & environnement

<table>
<thead>
<tr>
<th>Course</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil & environnement</td>
<td></td>
<td>Obl.</td>
</tr>
</tbody>
</table>

Language: English
Credits: 2
Session: Oral presentation
Exam: Oral presentation
Workload: 60h
Hours: 30
Lecture: 12
Exercises: 8
Practical work: 10
Number of positions:

Frequency
Every 3 years

Remarque
Next time: from 27.1.2020 to 6.2.2020

Summary
Large-scale time series analysis is performed by a new statistical tool that is superior to other estimators of complex state-space models. The identified stochastic dependences can be used for sensor fusion by Bayesian (e.g. Kalman) filtering or for studying changes in natural/biological phenomena.

Content

Linear dynamic systems
- state-space notation and propagation of errors
- modeling of sensor errors and state vector augmentation
- the need for stochastic model identification and parameter estimation in Bayesian filtering

Time series fundamentals
- measuring dependence, examples
- stationarity and fundamental representation
- ARMA models

Properties of estimators
- extremum estimators
- Maximum Likelihood
- Generalized Method of Moments
- consistency and asymptotic normality

Allan Variance
- Allan Variance definition, properties and estimation
- Allan Variance-based estimation of stochastic parameters

Generalized Method of Wavelet Moments (GMWM)
- wavelet variance
- GMWM estimator and its properties
- model selection

GMWM Extensions
- covariate-dependent models and examples
- multivariate-based modeling

GMWM usage
- ‘R’ and its GMWM package with documentation
- on-line computational platform
- examples

Note
Transversal skills:
• Make an oral presentation.
• Establish a link between theory and particular application.
• Search in bibliography for state-of-the art methods, algorithms and new applications.

Keywords
Statistics, modeling, estimation, sensor-fusion, time-series, Bayesian/Kalman filtering, state-space models

Learning Prerequisites
Required courses
Linear algebra, basic signal processing, basic statistics, basic programming

Learning Outcomes
By the end of the course, the student must be able to:
• Calculate Allan/Wavelet variances from time time-series data
• Identify structure of latent stochastic processes within a time series
• Estimate model parameters together with its confidence intervals
• Apply estimated models in state-space estimation

Expected student activities
The lectures alternates with labs during 2 week block. Students then work on a 32h project (distributed data or -after an agreement - their own data). The evaluation is based on written project report that is presented first orally before its due date - 1.5 month after block end.

Resources
Bibliography
Applied Time Series Analysis with R: https://smac-group.github.io/ts/
An Introduction to Statistical Programming Methods with R: https://smac-group.github.io/ds/
Moodle: (TBD)

Moodle Link
• https://moodle.epfl.ch/course/view.php?id=16080