Summary
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the qualitative analysis of nonlinear systems, both in discrete-time and continuous-time.

Content
• **Introduction**: Dynamics of linear and non linear systems. Definitions; Unicity of a solution; Limit Sets, Attractors.
• **Linear Systems**: Solutions; Stability of autonomous systems, Geometrical analysis, connection with frequency domain analysis.
• The class is methodology-driven. It may present some limited examples of applications, but it is not application-driven.

Keywords

Learning Prerequisites
Required courses
• Linear algebra (MATH 111 or equivalent).
• Analysis I, II, III (MATH 101, 106, 203 or equivalent).
• Circuits & Systems II (EE 205 or equivalent) or a Systems & Signals class (MICRO 310/311 or equivalent).

Recommended courses
• A first-year Probability class, such as MATH-232, MATH-231, MATH-234(b), MATH-234(c), or equivalent.
• Analysis IV (MATH 207 or equivalent)

Important concepts to start the course
• Linear Algebra (vector spaces, matrix operations, including inversion and eigendecomposition).
• Calculus (linear ordinary differential equations; Fourier, Laplace and z-Transforms).
• Basic notions of topology.
• Basic notions of probability.

Learning Outcomes
By the end of the course, the student must be able to:
• Analyze a linear or nonlinear dynamical system.
• Anticipate the asymptotic behavior of a dynamical system.
• Assess / Evaluate the stability of a dynamical system.
• Identify the type of solutions of a dynamical system.

Teaching methods
• Lectures (blackboard), 2h per week
• Exercise session, 1h per week.

Expected student activities
Exercises in class and at home (paper and pencil, and Matlab)

Assessment methods
1. Mid-term : cannot be given this year.
2. Final exam 100%

Supervision
Office hours Yes
Assistants Yes
Forum Yes

Resources
Bibliography
Course notes; textbooks given as reference on the moodle page of the course.

Notes/Handbook
Course notes, exercises and solutions provided on the moodle page of the course.

Moodle Link
• http://moodle.epfl.ch/course/view.php?id=303

Prerequisite for
Classes using methods from dynamical systems.