In silico neuroscience

Muller Eilif Benjamin, Schürmann Felix

Cursus

Mineur en Neuroprosthétiques	E	Opt.
Mineur en Neurosciences computationnelles	E	Opt.
Neurosciences		Opt.
Sciences du vivant	MA2, MA4	Opt.

Sem. Type

Language: English
Credits: 4
Session: Summer
Semester: Spring
Exam: Written
Workload: 120h
Weeks: 14
Hours: 4 weekly
Lecture: 2 weekly
Exercises: 2 weekly

Summary

“In silico Neuroscience” introduces students to a synthesis of modern neuroscience and state-of-the-art data management and computing technologies. This includes perspectives on neuroinformatics, neurosimulation, scientific computing, neuromorphic computing, clinical informatics, ethics and policy.

Content

“In silico Neuroscience” introduces masters students to a synthesis of modern neuroscience and state-of-the-art data management and computing technologies. The course will cover a number of key topics including: 1) how neuroscience data is acquired, organized and integrated (neuroinformatics), 2) data-driven modeling and validation of synapses, cells and networks (neurosimulation), 3) software technologies for simulation and analysis (scientific computing), 4) how the brain as a computational device may influence information technology (neuromorphic computing), 5) how to generate “big data” from the clinic (clinical neuroinformatics), 6) Ethical issues, and the global outlook including the emerging large-scale brain initiatives. The target audience are technically adept students in the EPFL Neuroscience program and students from other programs (e.g. I&C, SB, CSE) interested in applying their domain techniques to neuroscience.

Learning Prerequisites

Recommended courses
Neuroscience II
Introduction to programming
Projects in informatics

Important concepts to start the course
general knowledge on cellular neuroscience
experience in elementary programming (preferentially python)

Learning Outcomes

By the end of the course, the student must be able to:
• Choose appropriate annotations and provenance standards for experimental data
• Interpret discrepancies between experimental findings
• Assess / Evaluate different level of detail formulations of models
• Integrate biological facts into detailed neuron and tissue models
• Apply model concepts in simulations
• Exploit standard modelling and simulation software
• Analyze model predictions
• Explain formalisms and approaches in simulation software
Teaching methods
Classroom teaching & exercises
group work

Assessment methods
Written exam (100%)