BIOENG-437 Pharmaceutical biotechnology
Pick Horst

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing.-chim.</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Biotechnologie</td>
<td>H</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Language: English
Credits: 3
Session: Winter
Semester: Fall
Exam: Written
Workload: 90h
Weeks: 14
Hours: 3 weekly
Lecture: 2 weekly
Exercises: 1 weekly
Number of positions:

Summary
The course focuses on the development and application of biotechnology-based approaches to human diseases. It provides current information on the engineering and pharmaceutical production of highly specific therapeutic proteins, vaccines, and other important biologicals at an industrial scale.

Content

- Food biotechnology: Feeding an increasing world population. Functionalized food for improving human health
- Origin and spread of infectious diseases
- Antibiotics, antibiotic resistances, sources for new antibiotics
- Vaccines: Development and production. Anti-cancer vaccines for prevention and therapy
- Modern recombinant proteins, monoclonal antibodies, anti-cancer therapeutics, insulin, etc. as blockbuster therapeutics.
- Basics of cell culture, development of media, cell lines for industrial production of therapeutics
- Genetic cell engineering for the production of therapeutics: Transposons, gene amplification
- Chinese hamster ovary cells (CHO): The most prominent system for the production of therapeutic proteins
- Transgenic plants, transgenic animals for the production of therapeutics
- Bioreactors: Large-scale production of therapeutic proteins
- Patent law: How to protect intellectual property in pharmaceutical biotechnology
- Regulatory issues: How are drugs tested and approved for the market

Keywords
Infectious diseases, diseases of modern civilization, vaccines, antibiotics, monoclonal antibodies, immunology, therapeutic proteins, protein engineering, bacterial and mammalian cell culture, cell line engineering, immortalized cells, large-scale production, bioreactor, downstream processes, biosimilars, regulatory issues, patent law

Learning Outcomes
By the end of the course, the student must be able to:
- Define approaches in pharmaceutical biotechnology to fight human diseases
- Describe the basics of bacterial and mammalian cell culture
- Define strategies for the industrial production of therapeutic proteins
- Compare suitable cell systems for the production of a desired therapeutic protein
- Describe strategies for engineering cells for the production of recombinant proteins
• Specify essential steps to obtain market approval for a therapeutic protein
• Specify possible issues in copying complicated pharmaceutical proteins
• Discuss fields of intellectual property protection and steps to filing a patent in pharmaceutical biotechnology
• Realize that the biology of an organism determines the way how it can be used for production processes

Prerequisite for
The course is recommended to provide the theoretical background for the practical course "Biotechnology lab" where students learn to produce, purify, and characterize therapeutic proteins out of bacterial or mammalian cell culture.