CIVIL-460
Indoor Air Quality and Ventilation
Licina Dusan

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>MA2, MA4</td>
<td>Opt.</td>
</tr>
<tr>
<td>Mineur en Design intégré, architecture et durabilité</td>
<td>E</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Summary

This course provides a fundamental knowledge of an emerging area - indoor air quality. This course also gives an overview of ventilation strategies and airflow distribution strategies tuned to ensure the highest level of air quality in buildings.

Content

Indoor air pollution properties, sources and concentrations, sick-building syndrome, health effects and risk analysis; pollutant dynamic behaviour and fate, source control, conventional and advanced ventilation strategies; airflow/pollution distribution; air filtration energy conservation; human exposure assessment; models for predicting source emissions and human exposure; air pollution monitoring; air quality, ventilation standards, healthy building guidelines.

Keywords

Air quality in buildings, ventilation strategies, airflow distribution, human exposure

Learning Prerequisites

Required courses
None, but familiarity with building physics is recommended

Recommended courses
- Comfort and architecture: sustainable strategies (AR-442)
- Building energetics (ENG-445)
- Building physics I IV (AR PHYS)
- Air pollution and climate change (ENV-400)

Important concepts to start the course
- Building physics
- Fluid dynamics
- HVAC systems
- Indoor environmental quality

Learning Outcomes
By the end of the course, the student must be able to:

• Integrate indoor air quality & ventilation requirements into the building design & operation lifecycle
• Discuss about sources of particle- and gas-phase air pollutants in buildings and their impact on human health and well-being
• Perform calculations related to aerosol and gas-phase distribution and human exposure
• Assess / Evaluate building air pollution control mechanisms and determine their effectiveness
• Integrate air quality data and prepare and review written and oral technical documents
• Perform indoor air quality assessment through handling instrumentation and conducting measurements

Teaching methods
This course consists of theory lectures, hands-on sessions and individual and group assignments

Expected student activities
To actively participate in lectures, individual and group projects

Assessment methods

• Written mid-term exam based on theory: 20%
• Written end-semester exam based on theory: 20%
• Written individual blog post: 15%
• Written project report: 30%
• Oral presentation: 15%

Resources
Virtual desktop infrastructure (VDI)
No

Bibliography
Purchasing a textbook is not compulsory as students will be able to rely on combination of peer reviewed papers and accompanying materials for majority of the topics. The reference textbooks include the following:

• Peer-reviewed papers and websites - it will be provided throughout the semester

Ressources en bibliothèque

Prerequisite for
Master Project