Neuroengineering of vision

Ghezzi Diego

<table>
<thead>
<tr>
<th>Cursus</th>
<th>Sem.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioingénierie</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Ingénierie des sciences du vivant</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
<tr>
<td>Sciences du vivant</td>
<td>MA1, MA3</td>
<td>Opt.</td>
</tr>
</tbody>
</table>

Remarque

MA3 only

Summary

This course aims at providing the key knowledge and skills needed by professional bioengineers working in the field of vision restoration with neuroprostheses. During the course the students will work on a project related to the development of a visual prosthesis.

Content

- Fundamentals of vision: anatomy and physiology
- Clinical aspects of blindness
- Designing principles of visual prostheses
- Manufacturing and characterization
- Information processing, coding, and encoding
- Clinical outcomes and validations

Keywords

- Visual prostheses
- Vision restoration
- Visual processing

Learning Prerequisites

Required courses

- BIOENG-448 - Fundamentals of neuroengineering

Recommended courses

- BIOENG-442 - Biomaterials
Important concepts to start the course
This class requires a basic knowledge of materials science, microfabrication, electrical engineering, signal processing, and encoding/decoding.

Learning Outcomes
By the end of the course, the student must be able to:
- Formulate the fundamental concepts behind vision restoration
- Elaborate the main differences among visual prostheses
- Structure a research/industrial project in the field of neuroprosthetics for vision restoration

Transversal skills
- Use a work methodology appropriate to the task.
- Communicate effectively, being understood, including across different languages and cultures.
- Set objectives and design an action plan to reach those objectives.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Assess one’s own level of skill acquisition, and plan their on-going learning goals.
- Evaluate one’s own performance in the team, receive and respond appropriately to feedback.
- Give feedback (critique) in an appropriate fashion.
- Keep appropriate documentation for group meetings.
- Demonstrate a capacity for creativity.
- Make an oral presentation.
- Write a scientific or technical report.
- Summarize an article or a technical report.

Teaching methods
Lectures and group projects

Expected student activities
- Attending lectures
- Participating in a group project
- Reading material from the course and from literature as preparation

Assessment methods
- Written Exam (50 % of the grade)
- Group Project (50 % of the grade)

Supervision
Office hours Yes
Assistants Yes
Resources

Bibliography
Artificial Sight. Basic Research, Biomedical Engineering, and Clinical Advances; Editors: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (Eds.);

Websites
• http://webvision.med.utah.edu