MATH-400	Advanced	analvsis	I
			-

Ru	ıppen Hans-Jörg				
Cursus		Sem.	Туре	l anguage of	English
Bioengineering		MA1, MA3	Opt.	teaching	Linglish
SC master EPFL		MA1, MA3	Opt.	Credits	4 Winter
Sciences du vivant		MA1, MA3	Opt.	Semester	Semester Fall
				Exam Workload	Oral 120b
				Weeks	14

Hours

Courses Exercises

Number of positions

Remark

Advanced Analysis I and Advanced Analysis II must be taken together as a whole

Summary

Getting access to the concept of measures and probabilities, to that of Lebesgue's integral as well as to the idea of Fourier.

Content

- 1. Measuring sets
- 2. Integrating measurable functions
- 3. Convergence theorems
- 4. Fubini's theorem
- 5. Normed spaces
- 6. Banach spaces

Keywords

System of sets, fields, Lebesgu-Stieltjes measures, probabilities measures generated by monotn mappings, Lebesgue's integral, integrability and quasi-integrability, monotone convergence theorem, deminated convergence theorem, Fubini's therem, noremd Spaces, Banach spaces, Lp-spaces

Learning Outcomes

By the end of the course, the student must be able to:

- Characterize the domain of a measure
- Construct measures and probability spaces
- Explain Lebesgue's integral
- Compare different notions of integrals
- Formulate hypotheses for the validity of results as interchanging the order of sums, integrals and limits
- Explain the main concepts and propositions presented in the lecture
- Exploit the main propositions in concrete examples

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.

4 weekly 2 weekly

2 weekly

• Communicate effectively with professionals from other disciplines.

Teaching methods

Ex cathedra lecture with exercises

Expected student activities

Understanding the mathematical language necessary for a deep understanding of the notions of measure and integral as well as of the notion of function spaces.

Assessment methods

Oral exam

Supervision

Office hours	No
Assistants	No
Forum	No

Resources

Bibliography

M. Capinski, E. Kopp : Measure, Integral and probability, Springer.

Y. M. Berezansky, Z. G. Sheftel, G. F. Us: Functiona Analysis (I & II), Birkhäuser ISBN 3-7643-5344-9 C. Gasquet, P. Witomski: Fourier Analysis and Applications, Springer, ISBN 0-387-98485-2 W. Kammler: A First Course in Fourier AnalysisDavid, Online ISBN: 9780511619700 Hardback ISBN: 9780521883405 Paperback ISBN: 9780521709798

Ressources en bibliothèque

- A First Course in Fourier Analysis David / Kammler
- Measure, Integral and probability / Capinski
- Fourier Analysis and Applications / Gasquet
- Functiona Analysis / Berezansky

Notes/Handbook

Lecture notes: Advanced Analysis I by Hans-Jörg Ruppen (Librairie La Fontaine)

Websites

- http://cmspc11.epfl.ch/hjr
- https://cmspc11.epfl.ch/AFNextGen

Prerequisite for

Advanced Analysis II, probabilities, signal processing